& 9
9,°4
”
> O
‘o

THE ¢

DA PRO

BOOK

THE UNOFFICIAL GUIDE TO THE
WORLD’S MOST POPULAR DISASSEMBLER

CHRIS EAGLE

“I wholeheartedly recommend The
IDA Pro Book to all IDA Pro users.”
—lIlfak Guilfanov,

creator of IDA Pro

no starch

PRAISE FOR THE FIRST EDITION OF THE IDA PRO BOOK

“I wholeheartedly recommend The IDA Pro Book to all IDA Pro users.”
—ILFAK GUILFANOV, CREATOR OF IDA PRO

“A very concise, well laid out book. . . . The step by step examples, and much
needed detail of all aspects of IDA alone make this book a good choice.”
—CoDY PIERCE, TIPPINGPOINT DVLABS

“Chris Eagle is clearly an excellent educator, as he makes the sometimes very
dense and technically involved material easy to read and understand and also
chooses his examples well.”

—DiINo DAl Zovi, TRAIL OF BITS BLOG

“Provides a significantly better understanding not of just IDA Pro itself, but
of the entire RE process.”
—RYAN LINN, THE ETHICAL HACKER NETWORK

“This book has no fluff or filler, it’s solid information!”
—ERIC HULSE, CARNALOWNAGE BLOG

“The densest, most accurate, and, by far, the best IDA Pro book ever
released.”
—PIERRE VANDEVENNE, OWNER AND CEO OF DATARESCUE SA

“I highly recommend this book to anyone, from the person looking to begin
using IDA Pro to the seasoned veteran.”
—DUSTIN D. TRAMMELL, SECURITY RESEARCHER

“This book does definitely get a strong buy recommendation from me. It’s
well written and it covers IDA Pro more comprehensively than any other
written document | am aware of (including the actual IDA Pro Manual).”
—SEBASTIAN PORST, SENIOR SOFTWARE SECURITY ENGINEER, MICROSOFT

“Whether you need to solve a tough runtime defect or examine your
application security from the inside out, IDA Pro is a great tool and this book
is THE guide for coming up to speed.”

—JOE STAGNER, PROGRAM MANAGER, MICROSOFT

THE IDA PRO BOOK

2ND EDITION

The Unofficial Guide to the
World’s Moat Popular
Dirnaarembler

by Chris Eagle

¢

no starch
press

San Francisco

THE IDA PRO BOOK, 2ND EDITION. Copyright © 2011 by Chris Eagle.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed in Canada
1514131211 123456789

ISBN-10: 1-59327-289-8
ISBN-13: 978-1-59327-289-0

Publisher: William Pollock

Production Editor: Alison Law

Cover and Interior Design: Octopod Studios
Developmental Editor: Tyler Ortman

Technical Reviewer: Tim Vidas

Copyeditor: Linda Recktenwald

Compositor: Alison Law

Proofreader: Paula L. Fleming

Indexer: BIM Indexing & Proofreading Services

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The Library of Congress has cataloged the first edition as follows:

Eagle, Chris.

The IDA Pro book : the unofficial guide to the world's most popular disassembler / Chris Eagle.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-1-59327-178-7

ISBN-10: 1-59327-178-6

1. IDA Pro (Electronic resource) 2. Disassemblers (Computer programs) 3. Debugging in computer science. I.
Title.

QA76.76.D57E245 2008

005.1"'4--dc22

2008030632

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

This book is dedicated to my mother.

BRIEF CONTENTS

Yot a0/ [=To o 1 =T PPN XiX

1)1 (0o [0 T 1o o XXi

PART I: INTRODUCTION TO IDA

Chapter 1: Introduction t0 DiSASSEMDIYuiiiuriieieii e e eees 3
Chapter 2: Reversing and Disassembly TOOISc..iiiiiiiii e 15
Chapter 3: IDA Pro BackgroUnd............coeeuuiiiiiieieie ettt et 31

PART II: BASIC IDA USAGE

Chapter 4: Getting Started With IDAoouii e e eaas 43
Chapter 5: IDA Data DiSPIAYS. ... cuueeueeen et e ettt e e e e e e e e e e e ea e e e aeea e eeans 59
Chapter 6: Disassembly NaVIgationccuuiiiieiiiiiie e e e e ea e eans 79
Chapter 7: Disassembly Manipulationco. oo 101
Chapter 8: Datatypes and Data StrUCIUIES........vvuiirieieie it e et e ee e e e e e e e e e e aeeeaeees 127
Chapter 9: Cross-References and Graphing.........ccc. oo 167
Chapter 10: The Many Faces Of IDA ... oot e e ee 189

PART Ill: ADVANCED IDA USAGE

Chapter 11: CustOmMIZING IDA e et e e e e et e e e e eanaees 201
Chapter 12: Library Recognition Using FLIRT Signatures...........ccuveeuiaeiiiaeniieeiieciieeeeeeanees 211
Chapter 13: Extending IDA’S KNOWIEAQEcvuuiieiiiiiieice e e 227

Chapter 14: Patching Binaries and Other IDA Limitations..........c.ooveiiiiiieiniiiieei e 237

PART IV: EXTENDING IDA’S CAPABILITIES

Chapter 15: IDA SCIIPNG - e tn et ettt ettt e e e e e e e e e e e e e e ea e e e eeanaaes 249
Chapter 16: The IDA Software Development Kit.........c.oooeuiiiiiiiiiiiiee e 285
Chapter 17: The IDA PIUG-iN ArCItECIUIEiieee et 315
Chapter 18: Binary Files and IDA Loader MOdUIESoeiuiiiiiiiiiiiiiiei e 347
Chapter 19: IDA Processor MOTUIEScouuuieeiie ettt e e 377

PART V: REAL-WORLD APPLICATIONS

Chapter 20: Compiler PErSONAIItIEScceeuuieieie e e e 415
Chapter 21: Obfuscated Code ANAIYSIS.......c.uieuiii e e e e 433
Chapter 22: Vulnerability ANGIYSISiiieeieieiee et eea e 475
Chapter 23: Real-World IDA PIUG-INS ...t ettt et e a e 499

PART VI: THE IDA DEBUGGER

Chapter 24: The IDA DeBUQGOET ... eueie et e e e e e 513
Chapter 25: Disassembler/Debugger INtegrationcocuviiiiiiiieeiiiei e e 539
Chapter 26: Additional Debugger FEAUIeSccu e 569
Appendix A: UsiNg IDA FreeWAre 5.0ccuuiiiiiiiiii ettt e e 581
Appendix B: IDC/SDK CrosS-REFEIENCE.ceurieieiii ettt 585
g0 1= PP P PP 609

viii Brief Contents

CONTENTS IN DETAIL

ACKNOWLEDGMENTS XiX
INTRODUCTION XXi
PART |

INTRODUCTION TO IDA

1
INTRODUCTION TO DISASSEMBLY 3
DiSASSEMBIY TREOIY ...t ettt e e e e e eans 4
The What of DiSassembIYc..oin e 5
The Why Of DiSaSSEMbBIYiieiii e e e e e e e e e e e ees 6
MaIWATE ANAIYSIS ..evveeeeei et 6
VUINErability ANAIYSISoveriieeeie et 6
Software INteroperabilityo e 7
Compiler Validationc..iouii et 7
DebUGING DISPIAYS ... ceueeeeeiee ettt ettt 7
The HOW Of DiSasSemMbBIYccuuiiiiiiii e e e e ees 7
A Basic Disassembly AIGOrthmcooeuiiiiiiiiiii e 8
Linear Sweep DisassembIyccouuiiiiiiiiiii e 9
Recursive Descent DisassembBIY oo 11
SUMIMIBIY .ttt ettt ettt et e e e e e et e e e et et e e e et e e e s e e e ea e e e enn et e e e enaennas 14
2
REVERSING AND DISASSEMBLY TOOLS 15
ClasSIfICAtION TOOIS......eeei ettt e e e e e e e e 16
L= UPUPTPPTRPUPPPPIN 16
[0 S o 3 PPN 18
PEID ettt ettt e e e s 19
SUMMANY TOOIS ...ttt ettt et et et et e e e e e e e e e e e e e eenns 20
0] 00 PPN 20
o o O UUPPPPTTN 22
(o] o] [0 [3]11] o TSP PPPR PPN 23
(0] (o o PPN 24
AUMPDIN L et et e e e 25
Lo {1 PP 25
[DLT=Y o 1] o= o o I o To I PPN 27
K L]0 o TSP PP TP 27
DiISASSEMDIETS ...ttt et 28

SUIMIMBIY . ettt ettt ettt et ettt e e e e e e et e e e e e ea e e e ea e e s e e e eaeaeeneenaeneenennns 29

3

IDA PRO BACKGROUND 31
HeX-Rays’ StanCe ON PIFACYc.u ittt ettt e e e e e e e 32
(@)1 T g o [15N o J PPN 33
IDA VEISIONS. ... ettt ettt ettt ettt e e et et e et e et e et e e en e e eaaeeennas 33
1NN o= gL OIS 33
PUIChASING IDA ...t e et e e e e e e e et e e e e e ean 34
UPGrading IDAot e e 34
IDA SUPPOIT RESOUITES. ...et e eeieeie et ettt et e e et e e e e e e e e e e e e e enn s e eaeennees 35
YOur IDA INSEAIATIONce et ettt e e e e eanas 36
WiINAOWS INSEAIALIONeeeee e e 36
OS X and Linux INStallationc..oiouiii e e 37
IDA QN SELINUX .eettiiiiiiee ettt ettt e e e e e e eenens 38
32:Dit VS, B4-DIt IDA .o 38
The IDA DireCtOry LAYOUL.......eeeeriieeeite ettt e e e e eeeas 38
Thoughts on IDA’S USer INtErfaceeeee e e 40
SUMIMBIY . ettt ettt ettt e e e et e et e e e e e et e e e et ar e s e e et a e e e enn et e e e enaeanns 40
PART Il

BASIC IDA USAGE

4
GETTING STARTED WITH IDA 43
LAUNCNING IDA L.ttt et e et et e e e et e e e ea e eas 44
107N o1 L= T o = To |13V PN 45
Using the Binary File LOAUENccouuiiiiiiieeei e 47
IDA DAtabaSE FIlES..... ettt 48
IDA Database Creationuiveeuuieerieeeeei e eeee e e e ee e ee e e eena e e eeenneees 50
CloSING IDA DAtBh8SESeeieeie ettt 51
Reopening @ DAtabaseoiiuiiii i e 52
INntroduction t0 the IDA DeSKIOP ...ueeeiiie e e e ee 53
Desktop Behavior During Initial ANGIYSISuuveieriieeeiiee e 56
IDA DeSKtOp TIPS @NA TIICKS ...v.ueeerieeeeii ettt e e s 57
8T oo Tt aTo T = 0 T P 58
SUMIMBIY . ettt ettt ettt et e e e e et e e e e e et e e e et an e s e e e ea e e e enn et e e e enaennns 58
5
IDA DATA DISPLAYS 59
The PrinCipal IDA DiSPIAYS. ... eeeuueeeeeeetete ettt ettt e et e e e e e eneas 60
The Disassembly WINAOWc..uiiiiiiiiii e 60
The FUNCIONS WINAOWcouiiiiiiiiiieii e 66
The OUIPUL WINGOWceeeeee et e e e e e e eaaae 66
Secondary IDA DiSPIAYS. e 66
The HeX VIEW WINOOWcoiiiiiiiiiiei ettt 67
The EXPOItS WINGOW ...ceueiiiiiiii ettt e e e e et e e e e e e e e e eaaas 68
The IMPOItS WINGOWiiieiieeiit e e s 68

X Contents in Detail

The StrUCtUreS WINAOWcvuiiiiiiiiiei e eee et e et et e e e e e enees 69

The ENUMS WINOOW.uniiiieeeei ettt e e e e e e e eeas 70
Tertiary IDA DISPIAYS ... cuueeneee ettt ettt e e e e e e e e e e e e e e eans 70
The StriNgS WINAOWeeiiieeei et e e e 70
The NamMeS WINAOWeuiiiiiiie et et 72
The SegmeNntS WINGOWiuuiii ettt e e 74
The SigNatures WINAOWcoouniiiieiiece e e e e e e 74
The Type Libraries WINAOWoooiiniiiiiee e 75
The Function Calls WINAOWiiiiinieiiieeeei et 76
The Problems WINOOW e e e 76
SUMIMBIY .ttt ettt e ettt et et e e e e e e e e e eh e e b e e e ea e e e ean et e e e eneneenns 7
6
DISASSEMBLY NAVIGATION 79
BaSIC IDA NAVIGALION ...ceuuiiieiie ettt e e e e e s 80
DoUDIE-CHCK NAVIGAIIONoeertieiiiie ettt e e e e e 80
JUMP 10 AAAIESS. .. 82
NavIgation HiSIOrYc.uiie et 82
SEACK FIAIMES ... ettt e e et et e e e et et e e e ean 83
(0= 111197 I @o]017/=T 011 0] o 3P 85
Local Variable LAaYOULco.uuieiiiieeee e et 89
Stack Frame EXAMPIESccouuiieiiiecei et 89
IDA SEACK VIBWS. ...ttt ettt e e et et e e e e e e an s 93
Searching the Dat@bhaseccuu i e e e e e eaas 98
TEXE SEAICNES ... ettt ettt e e e e e e eaaae 99
BINAIY SEAICHES .. .ceiiii e 99
I T8 0010 F= Y PN 100
7
DISASSEMBLY MANIPULATION 101
NamMes anNd NAMING....c..ieui e et e e e e e e e ean e eeas 102
Parameters and Local Variablescooiiiiiiiiii e 102
NAMEA LOCALIONS ...cevvvtiiee ettt ettt e e e e e e e e e e eees 103
REGISIEr NBIMES. ... ettt e e e e e e e ees 105
ComMMENLING TN IDA ...ttt 106
Regular COMMENES et e e e e e e e ea s 107
Repeatable COMMENTSiui e e 107
Anterior and POSLEIIOr LINEScuuieiei et 108
FUNCEON COMMENLSeeiiiitiie ettt 108
Basic Code TransfOrMatioNSueeeeeiiiiei et e enans 108
Code DisSplay OPLIONSoeeerieeeeiee ettt e e e e et eeen e 109
Formatting INStruction OPerands............ccuueeuueeeiiiiee e 112
Manipulating FUNCHIONS o 113
Converting Data to Code (and ViCe Versa)........cooceuureuuieeuieinieiiieeiineeieaennes 119
Basic Data TranSfOrmationscoeeuuuuiiiiiiiiiiiie et e e 120
SPECITYING DaAta SIZES ... ceeriiiieiie e 121
WOrKing With SENGSeeeeieeeii e 122
SPECITYING AITAYS. ..ttt e e e e e e e e e e e e aeanaean 124
SUIMIMBIY . ettt ettt ettt et ettt e et e e e et e ea e et e e e ea e e e en e et e e e eneeaneenaens 126

Contents in Detail Xi

8

DATATYPES AND DATA STRUCTURES 127
Recognizing Data StrUCIUIE USEeee ettt e e e e e e e e ea e aeanas 130
ATTAY MEMDEE ACCESS ...eeneiete et e et e e e e e et e e e e e e e et e e e e ean e eeaaeanns 130
SEUCIUrE MEMDEE ACCESS ...ttt ea e en e 135
Creating IDA SITUCIUIES ... ettt et et e et et e et e e e e ea e eaaeaenaes 142
Creating a New Structure (Or UNiON)c.viinieiieiiieeei e et ee e e e 142
Editing Structure MemDEIS.......ovieei et 144
Stack Frames as Specialized StruCtUIeSoeeuueiiiieiieiie e 146
USING StrUCtUre TEMPIALES. .. eeeeet ettt e e e e e e e e e e e e e eanns 146
IMPOItING NEW SIIUCIUIES ... et ettt e et e e et e e et e e e e eaeeeanas 149
Parsing C Structure DecClarationscc.eeuuiieiiiiiiieiee e 149
Parsing C Header FileSoiiiiiiii et e e e 150
USING StANAAIA SITUCIUIES ...veveieeeii ettt e e e e e e e e e e eenaas 151
IDA TIL FRlES ettt ettt e et ettt e e e e e et ta b e e e e e eebab e e e aeeanan 154
Loading NeW TIL FIleS e 155
Sharing TIL FIES ... e a e 155
CH4 REVEISING PIIMET ...ttt ettt e et et e e e e e eaeaen s 156
The this POINEET ... e 156
Virtual Functions and Vtablesuv v 157
The ODJect Life CYCIe... . it 160
Name MangIiNguoeiei et 162
Runtime Type Identificationc.oooe i 163
Inheritance RelationShips 164
C++ Reverse ENgineering ReferenCes......c.vvuuiiieiiii e e 165
I 100010 F= YU PTN 166
9
CROSS-REFERENCES AND GRAPHING 167
CrOSS-RETEIBINCES ...ttt e e e e e e e e e e aaan 168
COode CroSS-REFEIENCES ...vuuieiiii ettt e e eaeeen 169
Data CroSS-REFEIENCESceiiiiiiiiiie et 171
CroSS-REfErENCE LISIS ..vvuiieeti ettt e 173
(0] 1o o @ | PPN 175
197N € = o 1011 o PPN 176
IDA External (Third-Party) Graphingc.ocoeuoiiiiiiiii e 176
IDA’s Integrated Graph VIEWcoeuiiiiii e 185
SUMIMIBIY ¢ttt ettt et e e e e e et e et et e e e e s ea e et e e ea s e e e ea e et e e e en e eaeennens 187
10
THE MANY FACES OF IDA 189
(0] oo (1Y (oo [T | 7 PP 190
Common Features of Console MOccuuiiiiiiiiiiie e 190
WiINdows ConSOIe SPECITICS ...uueeuieiiei e 191
LINUX CONSOIE SPECITICS ...uuiiieii i e e e 192
OS X CONSOIE SPECITICS ..eeernieeereet et 194
USiNg IDA’S BAtCh MOE ... ceeieeeiii et e s 196
SUIMIMIBIY . ettt ettt et e et et e e et e et e e e et e e e e ea e e e en e e b eeneeneeeneens 198

Xii Contents in Detail

PART 111
ADVANCED IDA USAGE

11
CUSTOMIZING IDA 201
CoNfIQUIALION FIIES ... ettt e e ea e eaae 201
The Main Configuration File: ida.cfgoouiiiiiiiiiii e 202
The GUI Configuration File: idagui.Cfg......ccccovviiiiiiiiiiii e, 203
The Console Configuration File: idatui.Cfgovvveriiiiiiiiiiie e, 206
Additional IDA Configuration OPLIONScceuuuiiieiieeeii e eenans 207
1 7] o] PP 207
Customizing IDA TOOIDAISeeeieiee e e 208
AT 0410 = Y PP 210
12
LIBRARY RECOGNITION USING FLIRT SIGNATURES 211
Fast Library Identification and Recognition TeChnology..........ooeevuiiieeiiniiiiiiieieiieeeeennn. 212
APPIYING FLIRT SIGNAIUESt eee et e e e e e e e e e e e e e e eean e eean 212
Creating FLIRT Signature FileSoueiii e 216
Signature-Creation OVEIVIEWicuuiiu et ean e 217
Identifying and Acquiring Static Librariesc..coeiiiiiiii i, 217
Creating Pattern FIleS e 219
Creating SigNatUre FIlESccuu e 221
SEAMTUP SIGNATUIES ...ttt et e e e e e e et e e e e e e e aen s 224
ST 0410 = Y PP 225
13
EXTENDING IDA’S KNOWLEDGE 227
Augmenting FUNCioN INfOrMALIONcoeuuiiiiii e 228
IDS FIlBS . ettt ettt ettt ettt ettt e e e e e e e e aee 230
Creating IDS FIlES. ... e ettt 231
Augmenting Predefined Comments with [0adint............ccoooiiiiiiiiiii e 233
SUMIMIBIY ¢ ettt ettt ettt et e e ettt e e e eh e e s e e ea e e e en e e e e e en e eaeenaens 235
14
PATCHING BINARIES AND OTHER IDA LIMITATIONS 237
The Infamous Patch Program MENUuiiiiiiiiiiiiii e e 238
Changing Individual Database BYLeSc..ieeiuiiiiiieiieecieeiie e 238
Changing a Word in the Databaseccceuiiiiiiiiiieiiceee e 239
Using the ASSEMDIE Dial0g......ieuuieiiiiiiei et 239
IDA Output Files and Patch GeNeration...........ccuuuveiuiiiiieeii e eaaes 241
IDA-Generated MAP FilES.....ccuuuiieiiieiie ettt 242
IDA-Generated ASM FilES.c.uuiiiiieieiie et 242
IDA-Generated INC FilES.......c.uuiiieiieiee e 243
IDA-Generated LST FilESceereiieiii e 243
IDA-Generated EXE FIleScoovuiiiiiiiiiiiie e 243

Contents in Detail

xiii

IDA-GeENErated DIF FilES .. cuuivniireiieeie et e e e e e e e e b e e 244
IDA-Generated HTML FIlES.....cuinieiieiiiei e e e 245
SUIMIMBIY . ettt ettt et et e et e e et e et e e e et et e e e e a e e e en e e b aeneeneenneens 245

PART IV
EXTENDING IDA’S CAPABILITIES

15
IDA SCRIPTING 249
2 Y o T] o (=T U T o PR 250
THE IDC LANQUAGE. .. et eteeee e ettt et e et et e et e et e et e et e et e e e e een e eaaeaenes 252
IDC VAriabIESceeveiiieie e 252
1 TR o o] =151 0] 3P 253
IDC SEAEMENTS ... eeeeeee et et e e e e e e e e e e e e e ea e enane 254
IDC FUNCHIONS ..t eeet ettt ettt e e et e e e e e e e e e e e et e e eenn e 254
15 O @] o1 od PR 256
13]ORN o {o] o | r= 1 1 I PP PPUPTPPR 257
Error Handling in IDC et e e 258
Persistent Data Storage in IDCc..oviuiiiiieiieeei e 259
Associating IDC Scripts With HOKEYSc.uuieiiiieiii e 261
USETUI IDC FUNCHIONS ...ttt ettt e e e e e e e e e eeaaas 261
Functions for Reading and Modifying Data............cooeuiiiiiiiiiiiiiiieeeee 262
User Interaction FUNCHIONS.........viiueiiiiere e 263
String-Manipulation FUNCIONSoieuiiiiie e 264
File INpUt/OULPUL FUNCLIONS. ... it e e e e ea s 264
Manipulating Database Namesc.uiviiiiiiiii e 266
Functions Dealing With FUNCHIONSuiiiiiiieiiiie e 266
Code Cross-Reference FUNCHONS.uuiieerieeeei et eeei e 267
Data Cross-Reference FUNCHONS..........couuuiiiiiiiiiiiiiece e 268
Database Manipulation FUNCLIONS.ccuuiiiuiiiiiie e 268
Database Search FUNCHIONS.oiiviiiiiiiie e 269
Disassembly LiN@ COMPONENESccuuuierieeeeii et e e e e ennaee 270
IDC SCripting EXAMPIES....... ittt e 270
Enumerating FUNCLIONS i 270
Enumerating INStrUCHIONSuuiei e 271
Enumerating CroSS-REfEreNCeS.c.uiiiniiiiii e 272
Enumerating EXported FUNCHIONS.......ccuuiiiiiiiieii e e e 275
Finding and Labeling FUNCLioN ArgUMENLScouuveiirieieiiieieeieeeei e 275
Emulating Assembly Language Behaviorccoooveiiiiiiiiiiiiiiiie e 278
IDAPYENON ...ttt ettt a e e e e e ran e e aeeneen 280
USING IDAPYINON ...ttt et e e e 281
IDAPYthon Scripting EXamPIESc.u e e 282
Enumerating FUNCLIONSivuiiii e e e e e an e 282
Enumerating INStrUCHIONSc.vu et 282
Enumerating Cross-REfEreNCES.viiiuiiiiiiii e 283
Enumerating EXported FUNCHONS.......oeuniiiiiieeee e 283
SUIMIMBIY . ettt ettt et ettt e et e e et e ea e et e e e ea e e e en e e e e e eneeaneenaens 284

Xiv Contents in Detail

16

THE IDA SOFTWARE DEVELOPMENT KIT 285
570G 911 0o (1T (o o RPN 286
YD QTS 7= 1 =i o o DR 287
SDK LAY OUL. ..ttt ettt e ettt e e e e e 287
Configuring a Build ENVIFONMENtc..iiiiiiiiiie e 289
The IDA Application Programming INterfaceccouoveeiiiiiiiiiiiiie e 289
Header FIleS OVEIVIEWcovuiiieii et 290
NEINOUES ...t e et e e e e e e e e e 294
USeful SDK DA@tYPES .. .uneeneeeet et et e e e et e e e e e et e et e e e e e e e e e e eeaeeenns 302
Commonly Used SDK FUNCHONS........ieuuiiiiiiieeie et 304
Iteration Techniques Using the IDA APL........ e 310
SUMIMIBIY Lttt ettt et e e et e e e et e et et e e e e e ea e et e e ea s e e ea e e e e e e ea e e e e enaens 314
17
THE IDA PLUG-IN ARCHITECTURE 315
YAV A1 o = W (0o T o U 316
The PIUG-iN Life CYCIE ... 318
Plug-in INItIANIZALIONeee e e 320
Event NOtIfiCAtIONcooviiiiie e 321
PIUG-IN EXECULION ..ttt et e e e 322
BUIIING YOUF PIUG-INS ..ttt e e e e e e e 324
INSEAIIING PIUG-INS ...ttt et e et e e e e e e e e e e e e e eaeeennas
Configuring Plug-ins
EXIENAING IDC ..o ettt et aaas
Plug-in User INterface OPtiONSvuueiii it e et e e e et e e e e e eaeaenees 333
Using the SDK’S ChoOSEr DialOgSc.uvuueeieiiieiie et 334
Creating Customized Forms with the SDK...........cooiiiiiiiiiiiiiii e 337
Windows-Only User Interface—Generation Techniquesccceeeeveeennaennn. 341
User Interface Generation With Qt.........c.ooeuiiiiiiiiii s 342
SCHIPLEA PIUG-INS . .. ettt e et et et et e e e e e e e aean s 344
SUMIMIBIY Lttt ettt et e e e e et et e e e e e e e e et e et e e e e e e e s ean et e e e ea e e e ennetaen 346
18
BINARY FILES AND IDA LOADER MODULES 347
UNKNOWN FIle ANAIYSIS ..ttt e e e e e 348
Manually Loading a WINdows PE File..........oouiiii e 349
IDA LOAAEr MOGUIES ... ettt ettt et e e e et et e e e ea e e eaas 358
Writing an IDA Loader Using the SDKciiiniiiiieiii e e e e e e e 358
The SIMPIEtON LOATETcovviiiiiieeeeet e 361
Building an IDA Loader MOdUlecouuiiiiiiiieiei e 366
A pcap Loader fOr IDA. ... e 366
Alternative Loader SIrat@gies ieu ettt eaas 372
WIiting @ SCripted LOAENc.u e et eaas 373
SUMIMIBIY ¢ttt ettt et e e e et e et e et et e e e e s ea e et e e ea s e e e ea e e e e e e en e eaeenaens 375

Contents in Detail

XV

19

IDA PROCESSOR MODULES 377
PYthON Byte COO.... ettt et e e e e et e e e e e e e e ea e aeanas 378
LI Lo Tt o] =1 (= PN 379
Writing a Processor Module Using the SDKcc.uiiuiiiiiieeie e e 380
The ProCESSOr_t STFUCEneei e e e e 380
Basic Initialization of the LPH StrUCIUreccuvuiiiiiiiiiiiiiie e 381
TNE ANGIYZET ...t 385
THE EMUIBLOT . .. eeee ettt e e e e e 390
LI @ 1011101 S 394
Processor NOIfICAtIONS.c.uuiiiiiiiiii e 399
Other Processor_t MEMDEIS.iiuei e 401
BUilding Processor MOAUIESeeuniiiiei e et et e e et e e e eaaas 403
CuStOMIZING EXISING PrOCESSOIS ... eeeeieetiie e ettt e ettt e e e e e e e e e e e eab e e e eena e 407
Processor Module ArChItECIUNEieeie ettt 409
Scripting @ Processor MOUIE e e e ea s 411
SUMIMIBIY . ettt ettt et et ettt e et e e e et e et et e e e e e e e ne e e e ea e e eens 412
PART V

REAL-WORLD APPLICATIONS

20
COMPILER PERSONALITIES 415
Jump Tables and SWitch StatemMeNtScouu i e 416
I L] o] =T 4 T=T a1 = i o T PR 420
(o Tor= 11 oo J 1 1= | H TP UPPPTPN 421
Debug VS. REIEASE BINAIIES.uiieiiieiiiie et 428
Alternative Calling CONVENLIONSiieiiiee i e e e e e e e ea e eeas 430
SUMIMIBIY . ettt et ettt et et e e et e e e et e et e e e et e e s e b e e e e e e eens 432
21
OBFUSCATED CODE ANALYSIS 433
Anti-Static ANalySiS TECANIGUES.uueiiti et eeas 434
Disassembly DeSyNChroniZationoceeeueiieeiiineiiiis e 434
Dynamically Computed Target AdAreSSes.veuuiiuieiieiei e 437
Imported Function OBfUSCALIONc..oiuuiiiiie e 444
Targeted Attacks on ANalysis TOOIS........cuuviuuiiiiieii e 448
Anti—-Dynamic Analysis TEChNIQUESuiiiieeii i e e e e e eees 449
Detecting VirtualiZationieieunieieie e 449
Detecting INStrUMENLALIONcevuiieiiie e 451
Detecting DeBUQGOETS . ..n et 452
Preventing DebUQQOING ...c..oeuu i 453
Static De-obfuscation of Binaries USING IDAc..o oo 454
Script-Oriented De-0bfusCationc.iiiieiii e 455
Emulation-Oriented De-0bfuSCationcovvuiiiiiiiieiiiiiiiee e 460
Virtual Machine-Based ObfUSCAtIONuiiiiitieieii e e 472
SUIMIMBIY ettt ettt et et et e ettt et e e e e et e et e e e ea e ee e ea e e a e e e eneneenaennaen 474

XVi Contents in Detail

22
VULNERABILITY ANALYSIS

Discovering New Vulnerabilities with IDA...........coooiiiiiii e,
After-the-Fact Vulnerability Discovery with IDAccoooiiiiiiiiiiiiiiee,
IDA and the Exploit-Development ProCESSoeeuiienieiiiiiieieieeeieeeees
Stack Frame BreakdOwnc.covvviiiiiiiiiiiiiiieee e
Locating INStruction SEQUENCESccuuiveueriiieeieeei e eeiee e eannas
Finding Useful Virtual ADAressesoveeeeuiieieiiieeeiiieeeiieeeenn
Analyzing Shellcode.v i
SUMIMBIY .ttt ettt et e et e et e e et e e e e e et e e e enennaenns

23
REAL-WORLD IDA PLUG-INS

HEX RAY S e
IDAPYNON ..
(70 P21 o 1] == | (=N
(Lo Fo B¢ ST 1 T [
(O TS) (0] €111 S PP
MYV e
1o F= 1o | PPN
SUMIMEATY ..ttt e e et e e e e e e e e e neraeean e

PART VI
THE IDA DEBUGGER

24
THE IDA DEBUGGER

Launching the DEDUGOETuuiieie et
Basic Debugger DiSPlays.ueeu et
ProCess CONIOloveeeieiie e e e
BreakpOintseeiie et
L T [o PPN
SEACK TIBCES . eeeti ettt et e e e eeeas
WALCHES ... e
Automating Debugger Tasksc..oieuiiiiiee e
Scripting Debugger ACHONSooeuiiiiiiiiei e
Automating Debugger Actions with IDA Plug-ins............cceeeuuneee.
SUMIMBIY Lttt e e e e et et et e e et e e e n et e e e ean e e e e eens

25
DISASSEMBLER/DEBUGGER INTEGRATION

2 Fo T (o | (o 0] o PP
IDA Databases and the IDA Debugger..........ccvviuiiiiiiiiiiiiieeieeeeeae
Debugging Obfuscated COUEccuuiiiuiiiiiiee e
LauNChiNg the PrOCESS .. .cvuiiieeiii et e s
Simple Decryption and Decompression LOOPScevuveeneerneennnnns

Contents in Detail

XVii

Import Table RECONSITUCTIONvvt i e e 550

HIidiNg the DEDUGOETeveeeet et 555
Lo F=] (=T 1o P 560
Dealing With EXCEPLIONSeee ettt ettt e e e e e e e e e e e e e e eaeaeanas 561
ST 0410 = Y PP 568
26
ADDITIONAL DEBUGGER FEATURES 569
Remote Debugging With IDA.......couu i 569
Using a Hex-Rays Debugging Serverc.ooveieiiiiiiiiiieeeieeee e 570
Attaching t0 @ REMOLE PrOCESScuuieeeei e ee et e e e eeas 573
Exception Handling During Remote Debuggingccuuvveuuieiiiiiuiiiinieieeenes 574
Using Scripts and Plug-ins During Remote Debuggingc..cceuvveuiienieinneennns 574
Debugging With BOCNSiieiii e e e e e eaas 574
BOChS IDB IMOOE ...ttt et e e 575
BOChS PE MOcceiei ettt 576
Bochs Disk IMage MOE.......c.u i 577
APPCAIL . et e 578
SUMIMIBIY . ettt ettt e e e e e e et e e e e e a e et e e e e e e et e na e e e en e e eens 579
A
USING IDA FREEWARE 5.0 581
ResStrictions 0N IDA FIEEWAIEuuiiiiiiieiii ettt 582
USING IDA FIEEWAIE ...ceniiteeeee et ettt e e e et e et e et e et e et et e e an e eeaaeeenns 583
B
IDC/SDK CROSS-REFERENCE 585
INDEX 609

Xviii Contents in Detail

ACKNOWLEDGMENTS

As with the first edition, |1 would like to thank my family
for putting up with me while | worked on this project.
I am ever grateful for their patience and tolerance.

I would also like to thank everyone who helped make the first edition
a success, in particular the readers who I hope have found it to be a useful
addition to their reverse engineering libraries. Without your support and
many kind words, this edition would never have been possible.

Once again | wish to thank my technical editor Tim Vidas for all of his
input over the course of this project, as well as his wife Sheila for allowing me
to borrow him a second time.

Thanks also to the developers at Hex-Rays, not only for the product you
have built but also for putting up with my “bug” reports, too many of which
turned out to be false alarms. llfak, you have as usual been more than gen-
erous with your time; Elias, Igor, and Daniel, you have all provided insights
that I could have obtained nowhere else. Together you all make IDA my
favorite piece of software.

Finally, I would like to thank Alison Law and everyone else at No Starch
Press for their hard work in keeping this version of the book moving along as
smoothly as | could ever have hoped.

INTRODUCTION

Writing a book about IDA Pro is a challeng-
ing task. The fact that it is a complex piece
of software with more features than can even
be mentioned, let alone detailed in a book of
reasonable size, is the least of the difficulties. New
releases of IDA also tend to occur frequently enough

that any book will almost certainly be one, if not two,

versions behind by the time it hits the streets. Including version 5.3, which
was released just as the first edition was going to press, seven new versions of
IDA have been released since the first edition was published. The release of
version 6.0 with a new, Qt-based graphical user interface motivated me to
update the book and address many of the features that have been introduced
in the interim. Of course, true to form, another version of IDA (6.1) was
released late in the process just to make things more exciting.

My goal with this edition remains to help others get started with IDA and
perhaps develop an interest in reverse engineering in general. For anyone
looking to get into the reverse engineering field, | can’t stress how important

XXii

Introduction

it is that you develop competent programming skills. Ideally, you should love
code, perhaps going so far as to eat, sleep, and breathe code. If programming
intimidates you, then reverse engineering is probably not for you. It is possible
to argue that reverse engineering requires no programming at all because all
you are doing is taking apart someone else’s program; however, without com-
mitting to developing scripts and plug-ins to help automate your work, you
will never become a truly effective reverse engineer. In my case, programming
and reverse engineering substitute for the challenge of The New York Times
Sunday crossword puzzle, so it is rarely tedious.

For continuity purposes, this edition preserves the overall structure of
the first edition while elaborating and adding material where appropriate.
There are a number of ways to read this book. Users with little reverse engi-
neering background may wish to begin with Chapters 1 and 2 for some
background information on reverse engineering and disassemblers. Users
without much IDA experience who are looking to dive right in can begin
with Chapter 3, which discusses the basic layout of an IDA installation, while
Chapter 4 covers what goes on when you launch IDA and load a file for anal-
ysis. Chapters 5 through 7 discuss IDA’s user interface features and basic
capabilities.

Readers possessing some familiarity with IDA may wish to begin with
Chapter 8, which discusses how to use IDA to deal with complex data struc-
tures, including C++ classes. Chapter 9, in turn, covers IDA cross-references,
which are the foundation for IDA’s graph-based displays (also covered in
Chapter 9). Chapter 10 provides a bit of a diversion useful for readers inter-
ested in running IDA on non-Windows platforms (Linux or OS X).

More advanced IDA users may find Chapters 11 through 14 a good place
to start, because they cover some of the fringe uses of IDA and its companion
tools. A brief run-through of some of IDA’s configuration options is presented
in Chapter 11. Chapter 12 covers IDA’s FLIRT/FLAIR technology and related
tools that are used to develop and utilize signatures to distinguish library code
from application code. Chapter 13 offers some insight into IDA type libraries
and ways to extend them, while Chapter 14 addresses the much-asked ques-
tion of whether IDA can be used to patch binary files.

IDA is a quite capable tool right out of the box; however, one of its
greatest strengths is its extensibility, which users have taken advantage of to
make IDA do some very interesting things over the years. IDA’s extensibility
features are covered in Chapters 15 through 19, which begin with coverage
of IDA’s scripting features, including increased coverage of IDAPython, and
follow with a systematic walk through IDA’s programming API, as provided
by its software development kit (SDK). Chapter 16 provides an overview of
the SDK, while Chapters 17 through 19 walk you through plug-ins, file
loaders, and processor modules.

With the bulk of IDA’s capabilities covered, Chapters 20 through 23
turn to more practical uses of IDA for reverse engineering by examining how
compilers differ (Chapter 20); how IDA may be used to analyze obfuscated
code, as is often encountered when analyzing malware (Chapter 21); and

how IDA may be used in the vulnerability discovery and analysis process
(Chapter 22). Chapter 23 concludes the section by presenting some useful
IDA extensions (plug-ins) that have been published over the years.

The book concludes with expanded coverage of IDA’s built-in debugger
in Chapters 24 through 26. Chapter 24 begins by introducing the basic fea-
tures of the debugger. Chapter 25 discusses some of the challenges of using
the debugger to examine obfuscated code, including the challenge of deal-
ing with any anti-debugging feature that may be present. Chapter 26 concludes
the book with a discussion of IDA’s remote debugging capabilities and the
use of the Bochs emulator as an integrated debugging platform.

At the time of this writing, IDA version 6.1 was the most current version
available, and the book is written largely from a 6.1 perspective. Hex-Rays is
generous enough to make an older version of IDA available for free; the
freeware version of IDA is a reduced-functionality version of IDA 5.0. While
many of the IDA features discussed in the book apply to the freeware version
as well, Appendix A provides a brief rundown of some of the differences a
user of the freeware version can expect to encounter.

Finally, since it is a somewhat natural progression to begin with IDA
scripting and move on to creating compiled plug-ins, Appendix B provides a
complete mapping of every IDC function to its corresponding SDK counter-
parts. In some cases you will find a one-to-one correspondence between
an IDC function and an SDK function (though in all cases the names of
those functions are different); in other cases, you will find that several SDK
function calls are required to implement a single IDC function. The intent
of Appendix B is to answer questions along the lines of “I know how to do X
in IDC, how can | do X with a plug-in?” The information in Appendix B was
obtained by reverse engineering the IDA kernel, which is perfectly legal
under IDA’s atypical licensing agreement.

Throughout the book, | have tried to avoid long sequences of code in
favor of short sequences that demonstrate specific points. The vast majority
of sample code, along with many of the binary files used to generate examples,
is available on the book’s official website, http://www.idabook.com/, where you
will also find additional examples not included in the book as well as a com-
prehensive list of references used throughout the book (such as live links to
all URLs referred in footnotes).

Introduction XXiii

PART |

INTRODUCTION TO IDA

INTRODUCTIONTO
DISASSEMBLY

You may be wondering what to expect in
a book dedicated to IDA Pro. While obvi-
ously IDA-centric, this book is not intended
to come across as The IDA Pro User’'s Manual.

Instead, we intend to use IDA as the enabling tool

for discussing reverse engineering techniques that you will find useful in ana-
lyzing a wide variety of software, ranging from vulnerable applications to mal-
ware. When appropriate, we will provide detailed steps to be followed in IDA
for performing specific actions related to the task at hand. As a result we will
take a rather roundabout walk through IDA’s capabilities, beginning with
the basic tasks you will want to perform upon initial examination of a file and
leading up to advanced uses and customization of IDA for more challenging
reverse engineering problems. We make no attempt to cover all of IDA’s fea-
tures. We do, however, cover the features that you will find most useful in
meeting your reverse engineering challenges. This book will help make IDA
the most potent weapon in your arsenal of tools.

Prior to diving into any IDA specifics, it will be useful to cover some of
the basics of the disassembly process as well as review some other tools
available for reverse engineering of compiled code. While none of these
tools offers the complete range of IDA’s capabilities, each does address specific
subsets of IDA functionality and offer valuable insight into specific IDA fea-
tures. The remainder of this chapter is dedicated to understanding the disas-
sembly process.

Disassembly Theory

Anyone who has spent any time at all studying programming languages has
probably learned about the various generations of languages, but they are
summarized here for those who may have been sleeping.

First-generation languages
These are the lowest form of language, generally consisting of ones and
zeros or some shorthand form such as hexadecimal, and readable only
by binary ninjas. Things are confusing at this level because it is often diffi-
cult to distinguish data from instructions since everything looks pretty
much the same. First-generation languages may also be referred to as
machine languages, and in some cases byte code, while machine language
programs are often referred to as binaries.

Second-generation languages

Also called assembly languages, second-generation languages are a mere
table lookup away from machine language and generally map specific bit
patterns, or operation codes (opcodes), to short but memorable character
sequences called mnemonics. Occasionally these mnemonics actually help
programmers remember the instructions with which they are associated.
An assembler is a tool used by programmers to translate their assembly
language programs into machine language suitable for execution.

Third-generation languages
These languages take another step toward the expressive capability of
natural languages by introducing keywords and constructs that program-
mers use as the building blocks for their programs. Third-generation
languages are generally platform independent, though programs written
using them may be platform dependent as a result of using features
unique to a specific operating system. Often-cited examples include
FORTRAN, COBOL, C, and Java. Programmers generally use compilers
to translate their programs into assembly language or all the way to
machine language (or some rough equivalent such as byte code).

Fourth-generation languages
These exist but aren’t relevant to this book and will not be discussed.

4 Chapter 1

The What of Disassembly

In a traditional software development model, compilers, assemblers, and
linkers are used by themselves or in combination to create executable pro-
grams. In order to work our way backwards (or reverse engineer programs),
we use tools to undo the assembly and compilation processes. Not surprisingly,
such tools are called disassemblers and decompilers, and they do pretty much
what their names imply. A disassembler undoes the assembly process, so
we should expect assembly language as the output (and therefore machine
language as input). Decompilers aim to produce output in a high-level lan-
guage when given assembly or even machine language as input.

The promise of “source code recovery” will always be attractive in a
competitive software market, and thus the development of usable decompilers
remains an active research area in computer science. The following are just a
few of the reasons that decompilation is difficult:

The compilation process is lossy.
At the machine language level there are no variable or function names,
and variable type information can be determined only by how the data
is used rather than explicit type declarations. When you observe 32 bits
of data being transferred, you’ll need to do some investigative work to
determine whether those 32 bits represent an integer, a 32-bit floating
point value, or a 32-bit pointer.

Compilation is a many-to-many operation.
This means that a source program can be translated to assembly language
in many different ways, and machine language can be translated back to
source in many different ways. As a result, it is quite common that com-
piling a file and immediately decompiling it may yield a vastly different
source file from the one that was input.

Decompilers are very language and library dependent.
Processing a binary produced by a Delphi compiler with a decompiler
designed to generate C code can yield very strange results. Similarly,
feeding a compiled Windows binary through a decompiler that has no
knowledge of the Windows programming API may not yield anything
useful.

A nearly perfect disassembly capability is needed in order to accurately
decompile a binary.
Any errors or omissions in the disassembly phase will almost certainly
propagate through to the decompiled code.

Hex-Rays, the most sophisticated decompiler on the market today, will
be reviewed in Chapter 23.

Introduction to Disassembly 5

6

The Why of Disassembly

Chapter 1

The purpose of disassembly tools is often to facilitate understanding of pro-
grams when source code is unavailable. Common situations in which disas-
sembly is used include these:

e Analysis of malware
o Analysis of closed-source software for vulnerabilities
o Analysis of closed-source software for interoperability

o Analysis of compiler-generated code to validate compiler performance/
correctness

o Display of program instructions while debugging

The subsequent sections will explain each situation in more detail.

Malware Analysis

Unless you are dealing with a script-based worm, malware authors seldom do
you the favor of providing the source code to their creations. Lacking source
code, you are faced with a very limited set of options for discovering exactly
how the malware behaves. The two main techniques for malware analysis are
dynamic analysis and static analysis. Dynamic analysis involves allowing the
malware to execute in a carefully controlled environment (sandbox) while
recording every observable aspect of its behavior using any number of system
instrumentation utilities. In contrast, static analysis attempts to understand
the behavior of a program simply by reading through the program code,
which, in the case of malware, generally consists of a disassembly listing.

Vulnerability Analysis

For the sake of simplification, let’s break the entire security-auditing process
into three steps: vulnerability discovery, vulnerability analysis, and exploit
development. The same steps apply whether you have source code or not;
however, the level of effort increases substantially when all you have is a
binary. The first step in the process is to discover a potentially exploitable
condition in a program. This is often accomplished using dynamic tech-
niques such as fuzzing,* but it can also be performed (usually with much
more effort) via static analysis. Once a problem has been discovered, further
analysis is often required to determine whether the problem is exploitable at
all and, if so, under what conditions.

Disassembly listings provide the level of detail required to understand
exactly how the compiler has chosen to allocate program variables. For
example, it might be useful to know that a 70-byte character array declared
by a programmer was rounded up to 80 bytes when allocated by the compiler.
Disassembly listings also provide the only means to determine exactly how a

1. Fuzzing is a vulnerability-discovery technique that relies on generating large numbers of
unique inputs for programs in the hope that one of those inputs will cause the program to fail in
a manner that can be detected, analyzed, and ultimately exploited.

compiler has chosen to order all of the variables declared globally or within
functions. Understanding the spatial relationships among variables is often
essential when attempting to develop exploits. Ultimately, by using a disas-
sembler and a debugger together, an exploit may be developed.

Software Interoperability

When software is released in binary form only, it is very difficult for com-
petitors to create software that can interoperate with it or to provide plug-in
replacements for that software. A common example is driver code released
for hardware that is supported on only one platform. When a vendor is
slow to support or, worse yet, refuses to support the use of its hardware with
alternative platforms, substantial reverse engineering effort may be required
in order to develop software drivers to support the hardware. In these cases,
static code analysis is almost the only remedy and often must go beyond the
software driver to understand embedded firmware.

Compiler Validation

Since the purpose of a compiler (or assembler) is to generate machine lan-
guage, good disassembly tools are often required to verify that the compiler is
doing its job in accordance with any design specifications. Analysts may also
be interested in locating additional opportunities for optimizing compiler
output and, from a security standpoint, ascertaining whether the compiler
itself has been compromised to the extent that it may be inserting back doors
into generated code.

Debugging Displays

Perhaps the single most common use of disassemblers is to generate listings
within debuggers. Unfortunately, disassemblers embedded within debuggers
tend to be fairly unsophisticated. They are generally incapable of batch disas-
sembly and sometimes balk at disassembling when they cannot determine
the boundaries of a function. This is one of the reasons why it is best to use a
debugger in conjunction with a high-quality disassembler to provide better
situational awareness and context during debugging.

The How of Disassembly

Now that you’re well versed in the purposes of disassembly, it’s time to move
on to how the process actually works. Consider a typical daunting task faced
by a disassembler: Take these 1L00KB, distinguish code from data, convert the code to
assembly language for display to a user, and please don’t miss anything along the way.
We could tack any number of special requests on the end of this, such as
asking the disassembler to locate functions, recognize jump tables, and identify
local variables, making the disassembler’s job that much more difficult.

In order to accommodate all of our demands, any disassembler will need
to pick and choose from a variety of algorithms as it navigates through the
files that we feed it. The quality of the generated disassembly listing will be

Introduction to Disassembly 7

8

Chapter 1

directly related to the quality of the algorithms utilized and how well they
have been implemented. In this section we will discuss two of the fundamental
algorithms in use today for disassembling machine code. As we present these
algorithms, we will also point out their shortcomings in order to prepare you
for situations in which your disassembler appears to fail. By understanding a
disassembler’s limitations, you will be able to manually intervene to improve
the overall quality of the disassembly output.

A Basic Disassembly Algorithm

For starters, let’s develop a simple algorithm for accepting machine language
as input and producing assembly language as output. In doing so, we will
gain an understanding of the challenges, assumptions, and compromises
that underlie an automated disassembly process.

Step 1
The first step in the disassembly process is to identify a region of code to
disassemble. This is not necessarily as straightforward as it may seem.
Instructions are generally mixed with data, and it is important to distin-
guish between the two. In the most common case, disassembly of an
executable file, the file will conform to a common format for executable
files such as the Portable Executable (PE) format used on Windows or the
Executable and Linking Format (ELF) common on many Unix-based systems.
These formats typically contain mechanisms (often in the form of hierar-
chical file headers) for locating the sections of the file that contain code
and entry points? into that code.

Step 2
Given an initial address of an instruction, the next step is to read the
value contained at that address (or file offset) and perform a table lookup
to match the binary opcode value to its assembly language mnemonic.
Depending on the complexity of the instruction set being disassembled,
this may be a trivial process, or it may involve several additional operations
such as understanding any prefixes that may modify the instruction’s
behavior and determining any operands required by the instruction. For
instruction sets with variable-length instructions, such as the Intel x86,
additional instruction bytes may need to be retrieved in order to com-
pletely disassemble a single instruction.

Step 3
Once an instruction has been fetched and any required operands
decoded, its assembly language equivalent is formatted and output as
part of the disassembly listing. It may be possible to choose from more
than one assembly language output syntax. For example, the two
predominant formats for x86 assembly language are the Intel format
and the AT&T format.

2. A program entry point is simply the address of the instruction to which the operating system
passes control once a program has been loaded into memory.

X86 ASSEMBLY SYNTAX: ATR&T VS. INTEL

There are two main syntaxes used for assembly source code: AT&T and Intel. Even
though they are second-generation languages, the two vary greatly in syntax from
variable, constant, and register access to segment and instruction size overrides

to indirection and offsets. The AT&T assembly syntax is distinguished by its use of
the % symbol to prefix all register names, the use of $ as a prefix for literal constants
(also called immediate operands), and its operand ordering in which the source
operand appears as the left-hand operand and the destination operand appears on
the right. Using AT&T syntax, the instruction to add four to the EAX register would
read: add $ox4,%eax. The GNU Assembler (Gas) and many other GNU tools, includ-
ing gcc and gdb, utilize AT&T syntax.

Intel syntax differs from AT&T in that it requires no register or literal prefixes
and the operand ordering is reversed such that the source operand appears on the
right and the destination appears on the left. The same add instruction using the Intel
syntax would read: add eax,0x4. Assemblers utilizing Intel syntax include the
Microsoft Assembler (MASM), Borland’s Turbo Assembler (TASM), and the Netwide
Assembler (NASM).

Step 4
Following the output of an instruction, we need to advance to the next
instruction and repeat the previous process until we have disassembled
every instruction in the file.

Various algorithms exist for determining where to begin a disassembly,
how to choose the next instruction to be disassembled, how to distinguish
code from data, and how to determine when the last instruction has been
disassembled. The two predominant disassembly algorithms are linear sweep
and recursive descent.

Linear Sweep Disassembly

The linear sweep disassembly algorithm takes a very straightforward approach
to locating instructions to disassemble: Where one instruction ends, another
begins. As a result, the most difficult decision faced is where to begin. The
usual solution is to assume that everything contained in sections of a program
marked as code (typically specified by the program file’s headers) represents
machine language instructions. Disassembly begins with the first byte in a
code section and moves, in a linear fashion, through the section, disassem-
bling one instruction after another until the end of the section is reached.
No effort is made to understand the program’s control flow through recogni-
tion of nonlinear instructions such as branches.

During the disassembly process, a pointer can be maintained to mark the
beginning of the instruction currently being disassembled. As part of the
disassembly process, the length of each instruction is computed and used to
determine the location of the next instruction to be disassembled. Instruction
sets with fixed-length instructions (MIPS, for example) are somewhat easier
to disassemble, as locating subsequent instructions is straightforward.

Introduction to Disassembly 9

10

Chapter 1

®e

The main advantage of the linear sweep algorithm is that it provides
complete coverage of a program’s code sections. One of the primary disad-
vantages of the linear sweep method is that it fails to account for the fact that
data may be comingled with code. This is evident in Listing 1-1, which shows
the output of a function disassembled with a linear sweep disassembler. This
function contains a switch statement, and the compiler used in this case
has elected to implement the switch using a jump table. Furthermore, the
compiler has elected to embed the jump table within the function itself. The
jmp statement at @, 401250, references an address table starting at @, 401257.
Unfortunately, the disassembler treats @ as if it were an instruction and
incorrectly generates the corresponding assembly language representation:

40123f: 55 push ebp

401240: 8b ec mov ebp,esp

401242: 33 c0 Xor eax,eax

401244: 8b 55 08 mov edx,DWORD PTR [ebp+8]
401247: 83 fa oc cmp edx, 0xc

40124a: of 87 90 00 00 00 ja 0x4012e0

401250: ff 24 95 57 12 40 00 jmp DWORD PTR [edx*4+0x401257]
401257: e0 12 loopne 0x40126b

401259: 40 inc eax

40125a: 00 8b 12 40 00 90 add BYTE PTR [ebx-ox6fffbfee],cl
401260: 12 40 00 adc al,BYTE PTR [eax]

401263: 95 xchg ebp,eax

401264: 12 40 00 adc al,BYTE PTR [eax]

401267: 9a 12 40 00 a2 12 40 call 0x4012:0xa2004012

40126e: 00 aa 12 40 00 b2 add BYTE PTR [edx-Ox4dffbfee],ch
401274: 12 40 00 adc al,BYTE PTR [eax]

401277: ba 12 40 00 c2 mov edx,0xc2004012

40127c: 12 40 00 adc al,BYTE PTR [eax]

401277: ca 12 40 lret o0x4012

401282: 00 d2 add dl,dl

401284: 12 40 00 adc al,BYTE PTR [eax]

401287: da 12 ficom DWORD PTR [edx]

401289: 40 inc eax

40128a: 00 8b 45 0Oc eb 50 add BYTE PTR [ebx+0x50eboc45],cl
401290: 8b 45 10 mov eax,DWORD PTR [ebp+16]
401293: eb 4b jmp 0x4012e0

Listing 1-1: Linear sweep disassembly

If we examine successive 4-byte groups as little-endian® values beginning at
@, we see that each represents a pointer to a nearby address that is in fact the
destination for one of various jumps (0040120, 0040128b, 00401290, . . .). Thus,
the loopne instruction at @ is not an instruction at all. Instead, it indicates a
failure of the linear sweep algorithm to properly distinguish embedded
data from code.

Linear sweep is used by the disassembly engines contained in the GNU
debugger (gdb), Microsoft’s WinDbg debugger, and the objdump utility.

3. A CPU is described as either big-endian or little-endian depending on whether the CPU saves
the most significant byte of a multibyte value first (big-endian) or whether it stores the least
significant byte first (little-endian).

Recursive Descent Disassembly

Recursive descent takes a different approach to locating instructions. Recur-
sive descent focuses on the concept of control flow, which determines whether
an instruction should be disassembled or not based on whether it is referenced
by another instruction. To understand recursive descent, it is helpful to clas-
sify instructions according to how they affect the CPU instruction pointer.

Sequential Flow Instructions

Sequential flow instructions pass execution to the instruction that immediately
follows. Examples of sequential flow instructions include simple arithmetic
instructions, such as add; register-to-memory transfer instructions, such as mov;
and stack-manipulation operations, such as push and pop. For such instructions,
disassembly proceeds as with linear sweep.

Conditional Branching Instructions

Conditional branching instructions, such as the x86 jnz, offer two possible
execution paths. If the condition evaluates to true, the branch is taken, and
the instruction pointer must be changed to reflect the target of the branch.
However, if the condition is false, execution continues in a linear fashion,
and a linear sweep methodology can be used to disassemble the next instruc-
tion. As it is generally not possible in a static context to determine the out-
come of a conditional test, the recursive descent algorithm disassembles both
paths, deferring disassembly of the branch target instruction by adding the
address of the target instruction to a list of addresses to be disassembled at a
later point.

Unconditional Branching Instructions

Unconditional branches do not follow the linear flow model and therefore are
handled differently by the recursive descent algorithm. As with the sequential
flow instructions, execution can flow to only one instruction; however, that
instruction need not immediately follow the branch instruction. In fact,
as seen in Listing 1-1, there is no requirement at all for an instruction to
immediately follow an unconditional branch. Therefore, there is no reason
to disassemble the bytes that follow an unconditional branch.

A recursive descent disassembler will attempt to determine the target
of the unconditional jump and add the destination address to the list of
addresses that have yet to be explored. Unfortunately, some unconditional
branches can cause problems for recursive descent disassemblers. When the
target of a jump instruction depends on a runtime value, it may not be possi-
ble to determine the destination of the jump using static analysis. The x86
instruction jmp eax demonstrates this problem. The eax register contains a
value only when the program is actually running. Since the register contains
no value during static analysis, we have no way to determine the target of the
jump instruction, and consequently, we have no way to determine where to
continue the disassembly process.

Introduction to Disassembly 11

12

Chapter 1

Function Call Instructions

Function call instructions operate in a manner very similar to unconditional
jump instructions (including the inability of the disassembler to determine the
target of instructions such as call eax), with the additional expectation that
execution usually returns to the instruction immediately following the call
instruction once the function completes. In this regard, they are similar to
conditional branch instructions in that they generate two execution paths.
The target address of the call instruction is added to a list for deferred disas-
sembly, while the instruction immediately following the call is disassembled in
a manner similar to linear sweep.

Recursive descent can fail if programs do not behave as expected when
returning from called functions. For example, code in a function can delib-
erately manipulate the return address of that function so that upon comple-
tion, control returns to a location different from the one expected by the
disassembler. A simple example is shown in the following incorrect listing,
where function foo simply adds 1 to the return address before returning to
the caller.

foo proc near
FF 04 24 inc dword ptr [esp] ; increments saved return addr
C3 retn

foo endp

; _____________________________________

bar:

E8 F7 FF FF FF call foo
05 89 45 F8 90 @®add eax, 90F84589h

As a result, control does not actually pass to the add instruction at @ fol-
lowing the call to foo. A proper disassembly appears below:

foo proc near
FF 04 24 inc dword ptr [esp]
a retn
foo endp
; _____________________________________
bar:
E8 F7 FF FF FF call foo
05 db 5 ;formerly the first byte of the add instruction
89 45 F8 ®mov [ebp-8], eax
90 nop

This listing more clearly shows the actual flow of the program in which
function foo actually returns to the mov instruction at @. It is important to
understand that a linear sweep disassembler will also fail to properly dis-
assemble this code, though for slightly different reasons.

Return Instructions

In some cases, the recursive descent algorithm runs out of paths to follow.
A function return instruction (x86 ret, for example) offers no information
about what instruction will be executed next. If the program were actually

running, an address would be taken from the top of the runtime stack, and
execution would resume at that address. Disassemblers do not have the
benefit of access to a stack. Instead, disassembly abruptly comes to a halt. It
is at this point that the recursive descent disassembler turns to the list of
addresses it has been setting aside for deferred disassembly. An address is
removed from this list, and the disassembly process is continued from this
address. This is the recursive process that lends the disassembly algorithm
its name.

One of the principle advantages of the recursive descent algorithm is
its superior ability to distinguish code from data. As a control flow-based
algorithm, it is much less likely to incorrectly disassemble data values as
code. The main disadvantage of recursive descent is the inability to follow
indirect code paths, such as jumps or calls, which utilize tables of pointers to
look up a target address. However, with the addition of some heuristics to
identify pointers to code, recursive descent disassemblers can provide very
complete code coverage and excellent recognition of code versus data. List-
ing 1-2 shows the output of a recursive descent disassembler used on the
same switch statement shown earlier in Listing 1-1.

0040123F push ebp

00401240 mov ebp, esp
00401242 xor eax, eax
00401244 mov edx, [ebp+arg 0]

00401247 cmp edx, OCh ; switch 13 cases

)
0040124A ja loc_4012E0 ; default
0040124A ; jumptable 00401250 case 0
00401250 jmp ds:off_401257[edx*4] ; switch jump
00401250 § == == === = o m o e

00401257 off_401257:

00401257 dd offset loc_4012E0 ; DATA XREF: sub_40123F+11r
00401257 dd offset loc_40128B ; jump table for switch statement
00401257 dd offset loc_401290

00401257 dd offset loc_401295

00401257 dd offset loc_40129A

00401257 dd offset loc_4012A2

00401257 dd offset loc_4012AA

00401257 dd offset loc_4012B2

00401257 dd offset loc_4012BA

00401257 dd offset loc_4012C2

00401257 dd offset loc_4012CA

00401257 dd offset loc_4012D2

00401257 dd offset loc_4012DA

0040128B § === = oo e e
0040128B

0040128B loc_40128B: CODE XREF: sub_40123F+11j
00401288 DATA XREF: sub_40123F:off_4012570

00401288 mov eax, [ebp+arg 4]
0040128E jmp short loc_4012E0
0040128E

jumptable 00401250 case 1
default
jumptable 00401250 case O

e e we W W

Listing 1-2: Recursive descent disassembly

Introduction to Disassembly 13

14

Note that the table of jump destinations has been recognized and for-
matted accordingly. IDA Pro is the most prominent example of a recursive
descent disassembler. An understanding of the recursive descent process will
help us recognize situations in which IDA may produce less than optimal dis-
assemblies and allow us to develop strategies to improve IDA’s output.

Summary

Chapter 1

Is deep understanding of disassembly algorithms essential when using a
disassembler? No. Is it useful? Yes! Battling your tools is the last thing you
want to spend time doing while reverse engineering. One of the many advan-
tages of IDA is that, unlike most other disassemblers, it offers you plenty of
opportunity to guide and override its decisions. The net result is that the fin-
ished product, an accurate disassembly, will be far superior to anything else
available.

In the next chapter we will review a variety of existing tools that prove
useful in many reverse engineering situations. While not directly related to
IDA, many of these tools have influenced and been influenced by IDA, and
they help to explain the wide variety of informational displays available in the
IDA user interface.

REVERSING AND
DISASSEMBLY TOOLS

With some disassembly background under
our belts, and before we begin our dive into
the specifics of IDA Pro, it will be useful to
understand some of the other tools that are
used for reverse engineering binaries. Many of these

tools predate IDA and continue to be useful for quick
glimpses into files as well as for double-checking the work that IDA does.
As we will see, IDA rolls many of the capabilities of these tools into its user
interface to provide a single, integrated environment for reverse engineering.
Finally, although IDA does contain an integrated debugger, we will not cover
debuggers here as Chapters 24, 25, and 26 are dedicated to the topic.

16

Classification Tools

Chapter 2

When first confronted with an unknown file, it is often useful to answer
simple questions such as “What is this thing?” The first rule of thumb when
attempting to answer that question is to never rely on a filename extension to
determine what a file actually is. That is also the second, third, and fourth
rules of thumb. Once you have become an adherent of the file extensions are
meaningless line of thinking, you may wish to familiarize yourself with one or
more of the following utilities.

file

The file command is a standard utility, included with most *NIX-style
operating systems and with the Cygwin® or MinGW? tools for Windows. File
attempts to identify a file’s type by examining specific fields within the file. In
some cases file recognizes common strings such as #!/bin/sh (a shell script)
or <html> (an HTML document). Files containing non-ASCII content present
somewhat more of a challenge. In such cases, file attempts to determine
whether the content appears to be structured according to a known file for-
mat. In many cases it searches for specific tag values (often referred to as
magic numbers®) known to be unique to specific file types. The hex listings
below show several examples of magic numbers used to identify some com-
mon file types.

Windows PE executable file
00000000 4D 5A 90 00 03 00 00 OO 04 00 00 00 FF FF 00 00 MZ..............
00000010 B8 00 00 00 00 00 00 00 40 00 00 00O 00 00 00 00 [

Jpeg image file
00000000 FF D8 FF EO 00 10 4A 46 49 46 00 01 01 01 00 60 JFIF.....)
00000010 00 60 00 00 FF DB 00 43 00 OA 07 07 08 07 06 OA Covevnnnn

Java .class file
00000000 CA FE BA BE 00 00 00 32 00 98 OA 00 2E 00 3E 08 2iiinns >.
00000010 00 3F 09 00 40 00 41 08 00 42 OA 00 43 00 44 OA .?..@.A..B..C.D.

file has the capability to identify a large number of file formats, including
several types of ASCII text files and various executable and data file formats.
The magic number checks performed by file are governed by rules contained
in a magic file. The default magic file varies by operating system, but common
locations include /usr/share/file/magic, /usr/share/misc/magic, and /etc/magic.
Please refer to the documentation for file for more information concerning
magic files.

1. See http://www.cygwin.com/.
2. See http://www.mingw.org/.

3. A magic number is a special tag value required by some file format specifications whose presence
indicates conformance to such specifications. In some cases humorous reasons surround the
selection of magic numbers. The Mz tag in MS-DOS executable file headers represents the initials
of Mark Zbikowski, one of the original architects of MS-DOS, while the hex value oxcafebabe,
the well-known magic number associated with Java .class files, was chosen because it is an easily
remembered sequence of hex digits.

THE CYGWIN ENVIRONMENT

Cygwin is a set of utilities for the Windows operating system that provides a Linux-style
command shell and associated programs. During installation, users can choose from a
large number of standard packages, including compilers (gcc, g++), interpreters
(Perl, Python, Ruby), networking utilities (nc, ssh), and many others. Once Cygwin
has been installed, many programs written for use with Linux can be compiled and
executed on Windows systems.

In some cases, file can distinguish variations within a given file type.
The following listing demonstrates file’s ability to identify not only several
variations of ELF binaries but also information pertaining to how the binary
was linked (statically or dynamically) and whether the binary was stripped

or not.

idabook# file ch2_ex_*
ch2_ex.exe:

ch2_ex_upx.exe:

ch2_ex_freebsd:

ch2_ex_freebsd_static:

ch2_ex_freebsd static_strip:

ch2_ex_linux:

ch2_ex_linux_static:

ch2_ex_linux_static strip:

ch2_ex_linux_stripped:

MS-DOS executable PE for MS Windows (console)
Intel 80386 32-bit

MS-DOS executable PE for MS Windows (console)
Intel 80386 32-bit, UPX compressed

ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 5.4,
dynamically linked (uses shared 1libs),
FreeBSD-style, not stripped

ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 5.4,
statically linked, FreeBSD-style, not stripped
ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 5.4,
statically linked, FreeBSD-style, stripped

ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.6.9,
dynamically linked (uses shared libs),

not stripped

ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.6.9,
statically linked, not stripped

ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.6.9,
statically linked, stripped

ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.6.9,
dynamically linked (uses shared 1libs), stripped

Reversing and Disassembly Tools 17

STRIPPING BINARY EXECUTABLE FILES

Stripping a binary is the process of removing symbols from the binary file. Binary
object files contain symbols as a result of the compilation process. Some of these
symbols are utilized during the linking process to resolve references between files
when creating the final executable file or library. In other cases, symbols may be
present to provide additional information for use with debuggers. Following the
linking process, many of the symbols are no longer required. Options passed to
the linker can cause the linker to remove the unnecessary symbols at build time.
Alternatively, a utility named strip may be used to remove symbols from existing
binary files. While a stripped binary will be smaller than its unstripped counterpart,
the behavior of the stripped binary will remain unchanged.

file and similar utilities are not foolproof. It is quite possible for a file to
be misidentified simply because it happens to bear the identifying marks of
some file format. You can see this for yourself by using a hex editor to modify
the first four bytes of any file to the Java magic number sequence: CA FE BA BE.
The file utility will incorrectly identify the newly modified file as compiled
Java class data. Similarly, a text file containing only the two characters Mz will
be identified as an MS-DOS executable. A good approach to take in any reverse
engineering effort is to never fully trust the output of any tool until you have
correlated that output with several tools and manual analysis.

PE Tools

PE Tools* is a collection of tools useful for analyzing both running processes
and executable files on Windows systems. Figure 2-1 shows the primary
interface offered by PE Tools, which displays a list of active processes and
provides access to all of the PE Tools utilities.

t'D_PE Tools ¥1.5 RCT by NEOx,/[uinC], http:/ /www.uinc.ru E = |EI|1|

File WYiew Tools Plugns Options Help

QM ERLR|EOF e
Path PIC Irmage Base Image Size ;I
Ec:'l,cygwin'l,bin'l,bash.exe 00000328 00400000 0007 A000
0000064C 00061000
Ec:'l,cygwn'l,bln'l,bash.exe 00000564 00400000 0007 A000
BA c:\windows!system32iomd . exe 00000AE4 4ADOO0OO 00061000 —
@c:'l,cygwin'l,bin'l,bash.exe 00000048 00400000 0007 A000 -
Path Irmage Base Image Size =
BA c:\windows!system32iomd . exe 44000000 00061000
L’Q ciwindowsisystem32intdll. dil 7900000 0000000
L’Q ciwindowsisystem32ikernel32. i FCE00000 000FS000
L’Q ciwindowsisystem3Zimswvert.dl F7C10000 00058000
L’Q ciwindowsisystem32iuser32. dil FE410000 00090000
L’Q ciwindowsisystem32igdiz2. di FFF10000 00047000
L’{ﬂ ciwindows!system3zadvapizz. dil 77000000 00098000 LI
|Pr0cesses lnaded: 66 Memory: 694560 Kbf2519560 Kb 4

Figure 2-1: The PE Tools utility

4. See http://petools.org.ru/petools.shtml.

18 Chapter 2

From the process list, users can dump a process’s memory image to a file
or utilize the PE Sniffer utility to determine what compiler was used to build
the executable or whether the executable was processed by any known
obfuscation utilities. The Tools menu offers similar options for analysis of
disk files. Users can view a file’s PE header fields by using the embedded PE
Editor utility, which also allows for easy modification of any header values.
Modification of PE headers is often required when attempting to reconstruct
a valid PE from an obfuscated version of that file.

BINARY FILE OBFUSCATION

Obfuscation is any attempt to obscure the true meaning of something. When applied
to executable files, obfuscation is any attempt to hide the true behavior of a program.
Programmers may employ obfuscation for a number of reasons. Commonly cited
examples include protecting proprietary algorithms and obscuring malicious intent.
Nearly all forms of malware utilize obfuscation in an effort to hinder analysis. Tools
are widely available to assist program authors in generating obfuscated programs.
Obfuscation tools and techniques and their associated impact on the reverse engi-
neering process will be discussed further in Chapter 21.

PEID

PEID® is another Windows tool whose primary purposes are to identify the
compiler used to build a particular Windows PE binary and to identify any
tools used to obfuscate a Windows PE binary. Figure 2-2 shows the use of
PEID to identify the tool (ASPack in this case) used to obfuscate a variant of
the Gaobot® worm.

% PEID v0.94] o im] 5
File: |C:'l,IdaBook'l,regschZ.exe_aspack D

Entrypoint: | 00055001 EF Section: | .aspack

File Offset: [DOD1AZ01 First Bytes: [60,E8,03,00

Linker Info: |6.0 Subsystem: |Win32 GUI

[B5Pack 2,12 - = Blewey Solodovnikey

| Mulki Scan I | Task Viewer I | Options I | About I | Exit I

[~ Stay on top

Figure 2-2: The PEID utility

5. See http://peid.info/.
6. See http://securityresponse.symantec.com/security_response/writeup.jsp?docid=2003-112112-1102-99.

Reversing and Disassembly Tools 19

20

Many additional capabilities of PEID overlap those of PE Tools, including
the ability to summarize PE file headers, collect information on running pro-
cesses, and perform basic disassembly.

Summary Tools

Chapter 2

Since our goal is to reverse engineer binary program files, we are going to
need more sophisticated tools to extract detailed information following initial
classification of a file. The tools discussed in this section, by necessity, are far
more aware of the formats of the files that they process. In most cases, these
tools understand a very specific file format, and the tools are utilized to parse
input files to extract very specific information.

nm

When source files are compiled to object files, compilers must embed informa-
tion regarding the location of any global (external) symbols so that the linker
will be able to resolve references to those symbols when it combines object
files to create an executable. Unless instructed to strip symbols from the final
executable, the linker generally carries symbols from the object files over
into the resulting executable. According to the man page, the purpose of the
nm utility is to “list symbols from object files.”

When nm is used to examine an intermediate object file (a .o file rather
than an executable), the default output yields the names of any functions
and global variables declared in the file. Sample output of the nm utility is
shown below:

idabook# gcc -c ch2_example.c
idabook# nm ch2_example.o

U _ stderrp
exit
fprintf
00000038 T get _max
00000000 t hidden
00000088 T main
00000000 D my_initialized global

printf
rand
scanf
srand
time

U

U

T

t

T

D
00000004 C my_unitialized_global
U

U

U

U

U

T usage

00000010
idabook#

Here we see that nm lists each symbol along with some information about
the symbol. The letter codes are used to indicate the type of symbol being

NOTE

listed. In this example, we see the following letter codes, which we will now

explain:

An undefined symbol, usually an external symbol reference.
A symbol defined in the text section, usually a function name.

A local symbol defined in the text section. In a C program, this usu-
ally equates to a static function.

An initialized data value.
An uninitialized data value.

Uppercase letter codes are used for global symbols, whereas lowercase letter codes are used
for local symbols. A full explanation of the letter codes can be found in the man

page for nm.

Somewhat more information is displayed when nm is used to display sym-

bols from an executable file. During the link process, symbols are resolved to

virtual addresses (when possible), which results in more information being
available when nm is run. Truncated example output from nm used on an

executable is shown here:

idabook# gcc -o ch2_example ch2_example.c

idabook# nm ch2_example

080485c0
08048644
0804860c
08048694
0804997c
08049a9c
08049a80
08049978

0804861c
idabooki

<o oW

U
U
t
T
t
T
D
B
b
d
U
U
U
U
U
T

>

exit

fprintf

frame_dummy

get _max

hidden

main

my_initialized global
my_unitialized_global
object.2

p.o

printf

rand

scanf

srand

time

usage

At this point, some of the symbols (main, for example) have been assigned
virtual addresses, new ones (frame_dummy) have been introduced as a result of
the linking process, some (my_unitialized global) have had their symbol type
changed, and others remain undefined as they continue to reference external
symbols. In this case, the binary we are examining is dynamically linked, and
the undefined symbols are defined in the shared C library. More information
regarding nm can be found in its associated man page.

Reversing and Disassembly Tools

21

22

Chapter 2

dd

When an executable is created, the location of any library functions referenced
by that executable must be resolved. The linker has two methods for resolving
calls to library functions: static linking and dynamic linking. Command-line
arguments provided to the linker determine which of the two methods is used.
An executable may be statically linked, dynamically linked, or both.”

When static linking is requested, the linker combines an application’s
object files with a copy of the required library to create an executable file.

At runtime, there is no need to locate the library code because it is already
contained within the executable. Advantages of static linking are that (1) it
results in slightly faster function calls and (2) distribution of binaries is easier
because no assumptions need be made regarding the availability of library
code on users’ systems. Disadvantages of static linking include (1) larger
resulting executables and (2) greater difficulty upgrading programs when
library components change. Programs are more difficult to update because
they must be relinked every time a library is changed. From a reverse engineer-
ing perspective, static linking complicates matters somewhat. If we are faced
with the task of analyzing a statically linked binary, there is no easy way to
answer the questions “Which libraries are linked into this binary?” and “Which
of these functions is a library function?” Chapter 12 will discuss the challenges
encountered while reverse engineering statically linked code.

Dynamic linking differs from static linking in that the linker has no need
to make a copy of any required libraries. Instead, the linker simply inserts ref-
erences to any required libraries (often .so or .dll files) into the final execut-
able, usually resulting in much smaller executable files. Upgrading library
code is much easier when dynamic linking is utilized. Since a single copy of a
library is maintained and that copy is referenced by many binaries, replacing
the single outdated library with a new version instantly updates every binary
that makes use of that library. One of the disadvantages of using dynamic
linking is that it requires a more complicated loading process. All of the nec-
essary libraries must be located and loaded into memory, as opposed to load-
ing one statically linked file that happens to contain all of the library code.
Another disadvantage of dynamic linking is that vendors must distribute not
only their own executable file but also all library files upon which that exe-
cutable depends. Attempting to execute a program on a system that does
not contain all the required library files will result in an error.

The following output demonstrates the creation of dynamically and
statically linked versions of a program, the size of the resulting binaries, and
the manner in which file identifies those binaries:

idabook# gcc -o ch2_example_dynamic ch2_example.c

idabook# gcc -o ch2_example_static ch2_example.c --static
idabook# 1s -1 ch2_example_*

-TWXr-Xr-x 1 root wheel 6017 Sep 26 11:24 ch2_example_dynamic
-Twxr-xr-x 1 root wheel 167987 Sep 26 11:23 ch2_example_static

7. For more information on linking, consult John R. Levine, Linkers and Loaders (San Francisco:
Morgan Kaufmann, 2000).

idabook# file ch2_example_*

ch2_example_dynamic: ELF 32-bit LSB executable, Intel 80386, version 1
(FreeBSD), dynamically linked (uses shared libs), not stripped

ch2_example_static: ELF 32-bit LSB executable, Intel 80386, version 1
(FreeBSD), statically linked, not stripped

idabooki#

In order for dynamic linking to function properly, dynamically linked
binaries must indicate which libraries they depend on along with the specific
resources that are required from each of those libraries. As a result, unlike
statically linked binaries, it is quite simple to determine the libraries on which
a dynamically linked binary depends. The 1dd (list dynamic dependencies) utility
is a simple tool used to list the dynamic libraries required by any executable.
In the following example, 1dd is used to determine the libraries on which the
Apache web server depends:

idabook# 1ldd /usr/local/sbin/httpd

/usxr/local/sbin/httpd:
libm.so.4 => /1ib/1libm.so.4 (0x280c5000)
libaprutil-1.s0.2 => /usr/local/lib/libaprutil-1.so.2 (0x280db000)
libexpat.so.6 => /usr/local/lib/libexpat.so.6 (0x280ef000)
libiconv.so.3 => /usr/local/lib/libiconv.so.3 (0x2810d000)
libapr-1.s0.2 => /usr/local/lib/libapr-1.s0.2 (0x281fa000)
libcrypt.so.3 => /1ib/libcrypt.so.3 (0x2821a000)
libpthread.so.2 => /lib/libpthread.so.2 (0x28232000)
libc.so0.6 => /1ib/libc.so.6 (0x28257000)

idabooki#

The 1dd utility is available on Linux and BSD systems. On OS X systems,
similar functionality is available using the otool utility with the -L option:
otool -L filename. On Windows systems, the dumpbin utility, part of the Visual
Studio tool suite, can be used to list dependent libraries: dumpbin /dependents
filename.

objdump

Whereas 1dd is fairly specialized, objdump is extremely versatile. The purpose
of objdump is to “display information from object files.” This is a fairly broad
goal, and in order to accomplish it, objdump responds to a large number (30+)
of command-line options tailored to extract various pieces of information
from object files. objdump can be used to display the following data (and much
more) related to object files:

Section headers
Summary information for each of the sections in the program file.

Private headers
Program memory layout information and other information required by
the runtime loader, including a list of required libraries such as that
produced by 1dd.

8. See http://www.sourceware.org/binutils/docs/binutils/objdump.html#objdump/.

Reversing and Disassembly Tools 23

Debugging information
Extracts any debugging information embedded in the program file.

Symbol information
Dumps symbol table information in a manner similar to the nm utility.

Disassembly listing
objdump performs a linear sweep disassembly of sections of the file marked
as code. When disassembling x86 code, objdump can generate either
AT&T or Intel syntax, and the disassembly can be captured as a text file.
Such a text file is called a disassembly dead listing, and while these files
can certainly be used for reverse engineering, they are difficult to navi-
gate effectively and even more difficult to modify in a consistent and
error-free manner.

objdump is available as part of the GNU binutils® tool suite and can be
found on Linux, FreeBSD, and Windows (via Cygwin). objdump relies on the
Binary File Descriptor library (libbfd), a component of binutils, to access
object files and thus is capable of parsing file formats supported by libbfd
(ELF and PE among others). For ELF-specific parsing, a utility named readelf
is also available. readelf offers most of the same capabilities as objdump, and
the primary difference between the two is that readelf does not rely upon
libbfd.

otool

otool is most easily described as an objdump-like utility for OS X, and it is useful
for parsing information about OS X Mach-O binaries. The following listing
demonstrates how otool displays the dynamic library dependencies for a
Mach-O binary, thus performing a function similar to 1dd.

idabook# file osx_example
osx_example: Mach-0 executable ppc
idabook# otool -L osx_example
osx_example:
/usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version 7.4.0)
/usr/1ib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/1ib/1ibSystem.B.dylib (compatibility version 1.0.0, current version 88.1.5)

24

Chapter 2

otool can be used to display information related to a file’s headers and
symbol tables and to perform disassembly of the file’s code section. For more
information regarding the capabilities of otool, please refer to the associated
man page.

9. See http://www.gnu.org/software/binutils/.

dumpbin

dumpbin is a command-line utility included with Microsoft’s Visual Studio suite
of tools. Like otool and objdump, dumpbin is capable of displaying a wide range of
information related to Windows PE files. The following listing shows how
dumpbin displays the dynamic dependencies of the Windows calculator program
in a manner similar to 1dd.

$ dumpbin /dependents calc.exe
Microsoft (R) COFF/PE Dumper Version 8.00.50727.762
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file calc.exe
File Type: EXECUTABLE IMAGE
Image has the following dependencies:

SHELL32.d11
msvcrt.dll
ADVAPI32.d11
KERNEL32.d11
GDI32.d1l
USER32.d11

Additional dumpbin options offer the ability to extract information from
various sections of a PE binary, including symbols, imported function names,
exported function names, and disassembled code. Additional information
related to the use of dumpbin is available via the Microsoft Developer Network
(MSDN).%0

c+Hilt

Languages that allow function overloading must have a mechanism for dis-
tinguishing among the many overloaded versions of a function since each ver-
sion has the same name. The following C++ example shows the prototypes for
several overloaded versions of a function named demo:

void demo(void);

void demo(int x);

void demo(double x);

void demo(int x, double y);
void demo(double x, int y);
void demo(char* str);

10. See http://msdn.microsoft.com/en-us/library/c1h23y6¢(VS.71).aspx.

Reversing and Disassembly Tools 25

26

Chapter 2

As a general rule, it is not possible to have two functions with the same
name in an object file. In order to allow overloading, compilers derive unique
names for overloaded functions by incorporating information describing the
type sequence of the function arguments. The process of deriving unique
names for functions with identical names is called name mangling.'* If we use
nm to dump the symbols from the compiled version of the preceding C++ code,
we might see something like the following (filtered to focus on versions of
demo):

idabook# g++ -o cpp_test cpp_test.cpp
idabook# nm cpp_test | grep demo
0804843c T _Z4demoPc

08048400 T _Z4demod

08048428 T _Z4demodi

080483fa T _Z4demoi

08048414 T _Z4demoid

0804834 T _Z4demov

The C++ standard does not define standards for name-mangling schemes,
leaving compiler designers to develop their own. In order to decipher the
mangled variants of demo shown here, we need a tool that understands our
compiler’s (g++ in this case) name-mangling scheme. This is precisely the
purpose of the c++filt utility. c++filt treats each input word as if it were a
mangled name and then attempts to determine the compiler that was used
to generate that name. If the name appears to be a valid mangled name, it
outputs the demangled version of the name. When c++filt does not recog-
nize a word as a mangled name, it simply outputs the word with no changes.

If we pass the results of nm from the preceding example through c++filt,
it is possible to recover the demangled function names, as seen here:

idabook# nm cpp_test | grep demo | c++filt
0804843c T demo(char*)

08048400 T demo(double)

08048428 T demo(double, int)

080483fa T demo(int)

08048414 T demo(int, double)

0804834 T demo()

It is important to note that mangled names contain additional informa-
tion about functions that nm does not normally provide. This information can
be extremely helpful in reversing engineering situations, and in more complex
cases, this extra information may include data regarding class names or
function-calling conventions.

11. For an overview of name mangling, refer to http://en.wikipedia.org/wiki/Name_mangling.

Deep Inspection Tools

So far, we have discussed tools that perform a cursory analysis of files based
on minimal knowledge of those files’ internal structure. We have also seen
tools capable of extracting specific pieces of data from files based on very
detailed knowledge of a file’s structure. In this section we discuss tools
designed to extract specific types of information independently of the type
of file being analyzed.

strings

It is occasionally useful to ask more generic questions regarding file content,
guestions that don’t necessarily require any specific knowledge of a file’s
structure. One such question is “Does this file contain any embedded strings?”
Of course, we must first answer the question “What exactly constitutes a
string?” Let’s loosely define a string as a consecutive sequence of printable
characters. This definition is often augmented to specify a minimum length
and a specific character set. Thus, we could specify a search for all sequences
of at least four consecutive ASCII printable characters and print the results to
the console. Searches for such strings are generally not limited in any way
by the structure of a file. You can search for strings in an ELF binary just as
easily as you can search for strings in a Microsoft Word document.

The strings utility is designed specifically to extract string content from
files, often without regard for the format of those files. Using strings with its
default settings (7-bit ASCII sequences of at least four characters) might yield
something like the following:

idabook# strings ch2_example
/1ib/1d-1inux.so0.2
__gmon_start__

libc.so.6

_I0_stdin_used

exit

srand

puts

time

printf

stderr

furite

scanf

__libc_start_main

GLIBC 2.0

PTRh

("]
usage: ch2_example [max]

A simple guessing game!

Please guess a number between 1 and %d.
Invalid input, quitting!

Congratulations, you got it in %d attempt(s)!
Sorry too low, please try again

Sorry too high, please try again

Reversing and Disassembly Tools 27

28

Chapter 2

Unfortunately, while we see some strings that look like they might be out-
put by the program, other strings appear to be function names and library
names. We should be careful not to jump to any conclusions regarding the
behavior of the program. Analysts often fall into the trap of attempting to
deduce the behavior of a program based on the output of strings. Remember,
the presence of a string within a binary in no way indicates that the string is
ever used in any manner by that binary.

Some final notes on the use of strings:

e When using strings on executable files, it is important to remember that,
by default, only the loadable, initialized sections of the file will be scanned.
Use the -a command-line argument to force strings to scan the entire
input file.

e strings gives no indication of where, within a file, a string is located. Use
the -t command-line argument to have strings print file offset informa-
tion for each string found.

o Many files utilize alternate character sets. Utilize the -e command-line
argument to cause strings to search for wide characters such as 16-bit
Unicode.

Disassemblers

As mentioned earlier, a number of tools are available to generate dead listing—
style disassemblies of binary object files. PE, ELF, and Mach-O binaries can
be disassembled using dumpbin, objdump, and otool, respectively. None of those,
however, can deal with arbitrary blocks of binary data. You will occasionally
be confronted with a binary file that does not conform to a widely used file
format, in which case you will need tools capable of beginning the disassem-
bly process at user-specified offsets.

Two examples of such stream disassemblers for the x86 instruction set are
ndisasm and diStorm.X? ndisasm is a utility included with the Netwide Assembler
(NASM).®® The following example illustrates the use of ndisasm to disassemble
a piece of shellcode generated using the Metasploit framework.*

idabook# ./msfpayload linux/x86/shell_findport CPORT=4444 R > fs
idabook# 1s -1 fs

-IW-Y--Y-- 1 ida ida 62 Dec 11 15:49 fs

idabook# ndisasm -u fs

00000000 31D2 Xxor edx,edx
00000002 52 push edx
00000003 89E5 mov ebp,esp
00000005 6A07 push byte +0x7
00000007 5B pop ebx
00000008 6A10 push byte +0x10

12. See http://www.ragestorm.net/distorm/.
13. See http://nasm.sourceforge.net/.
14. See http://www.metasploit.com/.

0000000A 54 push esp

0000000B 55 push ebp

0000000C 52 push edx

00000000 89E1 mov ecx,esp

0000000F FFO1 inc dword [ecx]
00000011 6A66 push byte +0x66
00000013 58 pop eax

00000014 (D80 int 0x80

00000016 66817D02115C cmp word [ebp+0x2],0x5c11
0000001C 75F1 jnz oxf

0000001E 5B pop ebx

0000001F 6A02 push byte +0x2
00000021 59 pop ecx

00000022 BO3F mov al,ox3f

00000024 (D80 int 0x80

00000026 49 dec ecx

00000027 79F9 jns 0x22

00000029 52 push edx

0000002A 682F2F7368 push dword 0x68732f2f
0000002F 682F62696E push dword Ox6e69622f
00000034 89E3 mov ebx,esp

00000036 52 push edx

00000037 53 push ebx

00000038 89E1 mov ecx,esp

0000003A BoOB mov al,oxb

0000003C CD80 int 0x80

The flexibility of stream disassembly is useful in many situations. One
scenario involves the analysis of computer network attacks in which network
packets may contain shellcode. Stream disassemblers can be used to dis-
assemble the portions of the packet that contain shellcode in order to ana-
lyze the behavior of the malicious payload. Another situation involves the
analysis of ROM images for which no layout reference can be located. Por-
tions of the ROM will contain data, while other portions will contain code.
Stream disassemblers can be used to disassemble just those portions of the
image thought to be code.

Summary

The tools discussed in this chapter are not necessarily the best of their breed.
They do, however, represent tools commonly available for anyone who wishes
to reverse engineer binary files. More important, they represent the types of
tools that motivated much of the development of IDA. In the coming chapters,
we will discuss such tools. An awareness of these tools will greatly enhance
your understanding of the IDA user interface and the many informational
displays that IDA offers.

Reversing and Disassembly Tools 29

IDA PRO BACKGROUND

The Interactive Disassembler Professional,
better and heretofore known as IDA Pro
or simply IDA is a product of Hex-Rays,*
located in Liége, Belgium. The programming
genius behind IDA is llfak Guilfanov, better known

as simply llfak. IDA began its life over a decade ago as

an MS-DOS, console-based application, which is significant in that it helps
us understand something about the nature of IDA’s user interface. Among
other things, non-GUI versions of IDA ship for all IDA-supported platforms?
and continue to use the console-style interface derived from the original
DOS versions.

At its heart, IDA is a recursive descent disassembler; however, a substantial
amount of effort has gone into developing logic to augment the recursive-
descent process. In order to overcome one of the larger shortcomings of
recursive descent, IDA employs a large number of heuristic techniques to

1. For many years, IDA was marketed by DataRescue; however, in January 2008, llfak moved
marketing and sales of IDA to his own company, Hex-Rays.

2. Currently supported platforms are Windows, Linux, and OS X.

32

identify additional code that may not have been found during the recursive-
descent process. Beyond the disassembly process itself, IDA goes to great
lengths not only to distinguish data disassemblies from code disassemblies
but also to determine exactly what type of data is being represented by those
data disassemblies. While the code that you view in IDA is in assembly lan-
guage, one of the fundamental goals of IDA is to paint a picture as close to
source code as possible. IDA makes every effort to annotate generated disas-
semblies with not only datatype information but also derived variable and
function names. These annotations minimize the amount of raw hex and
maximize the amount of symbolic information presented to the user.

Hex-Rays’ Stance on Piracy

Chapter 3

As an IDA user you should be aware of several facts. IDA is Hex-Rays’ flagship
product; accordingly, it is very sensitive about unauthorized distribution of
IDA. In the past, the company has seen a direct cause and effect relation-
ship between releases of pirated versions of IDA and declining sales. The
former publisher of IDA, DataRescue, has even gone so far as to post the
names of pirates to its Hall of Shame.® IDA thus utilizes several antipiracy
techniques in an effort to curb piracy and enforce licensing restrictions.

The first technique to be aware of: Each copy of IDA is watermarked in
order to uniquely tie it to its purchaser. If a copy of IDA turns up on a warez
site, Hex-Rays has the ability to track that copy back to the original buyer,
who will then be blacklisted from future sales. It is not uncommon to find
discussions related to “leaked” copies of IDA on the IDA support forums at
Hex-Rays.

Another technique IDA uses to enforce its licensing policies involves
scanning for additional copies of IDA running on the local network. When
the Windows version of IDA is launched, a UDP packet is broadcast on
port 23945, and IDA waits for responses to see whether other instances of
IDA running under the same license key are present on the same subnet.
The number of responses is compared to the number of seats to which the
license applies, and if too many copies are found on the network, IDA will
refuse to start. Do note, however, that it is permissible to run multiple
instances of IDA on a single computer with a single license.

The final method of license enforcement centers on the use of key files
tied to each purchaser. At startup, IDA searches for a valid ida.key file. Failure
to locate a valid key file will cause IDA to shut down immediately. Key files
are also used in determining eligibility for upgraded copies of IDA. In essence,
ida.key represents your purchase receipt, and you should safeguard it to ensure
that you remain eligible for future upgrades.

3. The Hall of Shame has been migrated to the Hex-Rays website: http://www.hex-rays.com/idapro/
hallofshame.html.

Obtaining IDA Pro

NOTE

First and foremost, IDA is not free software. The folks at Hex-Rays make their
living in part through the sales of IDA. A limited-functionality, freeware*
version of IDA is available for people who wish to familiarize themselves with
its basic capabilities, but it doesn’t keep pace with the most recent versions.
The freeware version, discussed more extensively in Appendix A, is a stripped-
down edition of IDA 5.0 (the current version being 6.1). Along with the
freeware version, Hex-Rays also distributes a restricted-functionality demon-
stration copy® of the current version. If the rave reviews that are found any-
where reverse engineering is discussed are not sufficient to convince you

to purchase a copy, then spending some time with either the freeware or
demo version will surely help you realize that IDA, and the customer support
that comes along with it, is well worth owning.

IDA Versions

As of version 6.0, IDA is available in GUI and console versions for Windows,
Linux, and OS X. IDA makes use of the Qt cross-platform GUI libraries to
provide a consistent user interface on all three platforms. From a functional-
ity standpoint, IDA Pro is offered in two versions: standard and advanced.
The two versions differ primarily in the number of processor architectures
for which they support disassembly. A quick look at the list of supported pro-
cessors® shows that the standard version (approximately USD540 as of this
writing) supports more than 30 processor families, while the advanced ver-
sion (at almost twice the price) supports more than 50. Additional archi-
tectures supported in the advanced version include x64, AMD64, MIPS, PPC,
and SPARC, among others.

IDA Licenses

Two licensing options are available when you purchase IDA. From the Hex-
Rays website:” “Named licenses are linked to a specific end-user and may be
used on as many computers as that particular end-user uses,” while “Computer
licenses are linked to a specific computer and may be used by different end-
users on that computer provided only one user is active at any time.” Note that
while a single named license entitles you to install the software on as many
computers as you like, you are the only person who may run those copies
of IDA, and, for a single license, IDA may be running on only one of those
computers at any given time.

Unlike many other software licenses for proprietary software, IDA's license specifically
grants users the right to reverse engineer IDA.

4. See http://www.hex-rays.com/idapro/idadownfreeware.htm.
5. See http://www.hex-rays.com/idapro/idadowndemo.htm.
6. See http://www.hex-rays.com/idapro/idaproc.htm.

7. See http://www.hex-rays.com/idapro/idaorder.htm.

IDA Pro Background 33

34

WARNING

Chapter 3

Purchasing IDA

Prior to version 6.0, IDA purchases included a Windows GUI version along
with console versions for Windows, Linux, and OS X. Beginning with version
6.0, purchasers must specify exactly which operating system they wish to run
their copy of IDA on. Each copy of IDA 6.x includes console and Qt-based
GUI versions for the specified operating system only. Additional licenses for
alternate operating systems are available for a reduced price. You can pur-
chase IDA through authorized distributors listed on the IDA sales web page
or directly from Hex-Rays by fax or email. Purchased copies can be delivered
via CD or downloaded, and they entitle the buyer to a year of support and
upgrades. In addition to the IDA installer, the CD distribution contains a
variety of extras such as the IDA software development kit (SDK) and other
utilities. Users who opt to download their purchased copy of IDA typically
receive only the installer bundle and are required to download other compo-
nents separately.

Hex-Rays has been known to restrict sales to specific countries based on
its experiences with piracy in those countries. It also maintains a blacklist of
users who have violated the terms of licensing for IDA and may refuse to do
business with such users and/or their employers.

Upgrading IDA

The IDA Help menu contains an option to check for an available upgrade.
Additionally, IDA will automatically issue warnings that your support period is
about to expire based on the expiration date contained in your key file. The
upgrade process typically involves submitting your ida.key file to Hex-Rays,
which will then validate your key and provide you with details on how to obtain
your upgraded version. Should you find that your version of IDA is too old to
be eligible for an upgrade, be sure to take advantage of Hex-Rays’ reduced
upgrade pricing for holders of expired keys.

Failure to maintain close control over your key file could result in an unauthorized user
requesting your allotted upgrade, preventing you from upgrading your copy of IDA.

As a final note on upgrading any version of IDA, we highly recommend
backing up your existing IDA installation or installing your upgrade to a
completely different directory in order to avoid losing any configuration files
that you may have modified. You will need to edit the corresponding files in
your upgrade version to re-enable any changes that you have previously made.
Similarly you will need to move, recompile, or otherwise obtain new versions
of any custom IDA plug-ins that you may have been using (more about plug-
ins and the plug-in installation process in Chapter 17).

IDA Support Resources

As an IDA user, you may wonder where you can turn for help when you have
IDA-related questions. If we do our job well enough, this book will suffice in
most situations. When you find yourself needing additional help, though,
here are some popular resources:

Official help documentation
IDA ships with a menu-activated help system, but it is primarily an over-
view of the IDA user interface and the scripting subsystem. No help is
available for the IDA SDK, nor is much help available when you have
questions like “How do | do x?”

Hex-Rays’ support page and forums
Hex-Rays hosts a support page® that offers links to various IDA-related
resources, including online forums available to licensed users. Users will
find that Ilfak and other core Hex-Rays programmers are frequent con-
tributors to the forums. The forums are also a good starting point for
unofficial support of the SDK, since many experienced IDA users are
more than willing to offer assistance based on their personal experiences.
Questions concerning use of the SDK are often answered with “Read
the include files.” The SDK is officially unsupported with a purchase of
IDA; however, Hex-Rays does offer a yearly support plan for an annual
fee of USD10,000 (yep, that’s right: $10K). An excellent resource to
familiarize yourself with the SDK is “IDA Plug-in Writing in C/C++” by
Steve Micallef.®

OpenRCE.org
A vibrant reverse engineering community exists at http://www.openrce.org/,
which contains numerous articles related to novel uses of IDA along with
active user forums. Similar to the forums at Hex-Rays, OpenRCE.org
attracts a large number of experienced IDA users who are often more
than willing to share their advice on how to resolve almost any problem
you may encounter with IDA.

RCE Forums
The Reverse Code Engineering (RCE) forums at http://www.woodmann
.com/ contain countless posts related to the use of IDA Pro. The focus of
the forums is much broader than the use of IDA Pro, however, with wide
coverage of many tools and techniques useful to the binary reverse
engineer.

8. See http://www.hex-rays.com/idapro/idasupport.htm.
9. See http://www.binarypool.com/idapluginwriting/idapw.pdf.

IDA Pro Background 35

36

The IDA Palace
Though it has had problems finding a permanent residence, the IDA
Palacel? is a website dedicated to hosting information on IDA-related
resources. Visitors can expect to find links to various papers related to
IDA usage along with scripts and plug-ins for extending IDA’s capabilities.

lIfak’s blog
Finally, Ilfak’s blog'! often contains postings detailing the use of IDA to
solve various problems ranging from general disassembly to debugging
and malware analysis. Additionally, postings by other Hex-Rays team
members often detail some of the latest IDA features, as well as features
that are under development.

Your IDA Installation

Chapter 3

Once you calm down from the initial excitement of receiving your shiny, new
IDA CD and get down to the task of installing IDA, you will see that your CD
contains directories named utilities and sdk containing various add-on utilities
and the IDA software development kit, respectively. These will be discussed
in detail later in the book. In the root directory of the CD you will find an
installation binary. For Windows users, this binary is a traditional Windows
installer executable. For Linux and OS X users, the installation binary is a
gzipped .tar file.

Windows Installation

Installing IDA on Windows is very straightforward. IDA’s Windows installer
requires a password that is supplied with your CD or via email if you have
downloaded your copy of IDA. Launching the Windows installer walks
you through several informational dialogs, only one of which requires any
thought. As shown in Figure 3-1, you will be offered the opportunity to
specify an installation location or to accept the default suggested by the
installer. Regardless of whether you choose the default or specify an alter-
nate location, for the remainder of this book we will refer to your chosen
install location as <IDADIR>. In your IDA directory, you will find your key file,
ida.key, along with the following IDA executables:

o idag.exe is the Windows native GUI version of IDA. Beginning with ver-
sion 6.2, this file will cease to be shipped with IDA.

e idag.exe is the Windows Qt GUI version of IDA (versions 6.0 and later).

e idaw.exe is the Windows text-mode version of IDA.

10. See http://old.idapalace.net/.
11. See http://www.hexblog.com/.

il Setup - IDA Pro Advanced v6.1 W =lmlx]

Select Destination Location &
Where should IDA Pro Advanced vé. 1 be installed? k
T

* Setup will install IDA Pro Advanced v6. 1into the following folder,

To continue, dick Mext. If you would like to select a different folder, dick Browse,

IC:\Program Files\Ida Browse. .. |

At least 190.6 MB of free disk space is required.

< Back I Mext = I Cancel

Figure 3-1: Choosing your installation location

With the move to the Qt cross-platform GUI library in IDA version 6.0,
the native Windows version of IDA (idag.exe) has been deprecated and will
cease to ship with IDA beginning with version 6.2.

0S X and Linux Installation

For installation on either OS X or Linux, gunzip and untar the appropriate
archive to a location of your choosing. On a Linux system, it might look
like this:

tar -xvzf ida61l.tgz

On an OS X system, it will look like this:

tar -xvzf ida6im.tgz

In either case, you will have a top-level directory named ida that contains
all required files.

For both OS X and Linux, the name of the GUI version is idaq and the
name of the console version is idal. The appearance of the console version is
very similar to the Windows console version of IDA, which is shown in Fig-
ure 3-2. Linux users may need to verify (using 1dd) that all shared libraries
required by IDA are available on their systems. One plug-in in particular,
IDAPython, expects to find Python version 2.6 installed. You may need to
upgrade your Python installation or create symbolic links as necessary to sat-
isfy IDA requirements.

IDA Pro Background 37

38

Chapter 3

[h.| CG\Windows \system32\cmd.exe - idaw.exe

Search Uiew Options Window

IDA — The Interactive Disassembler Pro
Version 6.1 <Win32 32-hit)

Copyright <(c> 2811 Hex—Rays
http:/7wuwuw. hex—rays.com

License: 48-3419-7454-9D, 1 user,. adv
Chris Eagle,. IDA vw6.1 heta

Figure 3-2: The console version of IDA Pro

IDA and SELinux

If you are a Linux user that has SELinux enabled, you may find that IDA
complains it “cannot enable executable stack as shared object” when attempt-
ing to load your desired processor module. The execstack command may be
used to fix this problem on a per module basis as shown here:

execstack -c <IDADIR>/procs/pc.ilx

32-hit vs. 64-bit IDA

Users of the advanced version of IDA will notice that they have two versions
of each IDA executable, such as idag.exe and idag64.exe or idaq and idaq64.
The distinction between the versions is that idax64 is capable of disassem-
bling 64-bit code; however, all of the IDA executables themselves are 32-bit
code. As a result, users running IDA on 64-bit platforms need to ensure that
any supporting software required by IDA is available in a 32-bit version. For
example, 64-bit Linux users must ensure that a 32-bit version of Python is
installed if they wish to use IDAPython for scripting. Consult the documenta-
tion for your operating system for details on mixing 32- and 64-bit software.

The IDA Directory Layout

Instant familiarity with the contents of your IDA installation is by no means
a requirement before you start using IDA. However, since our attention is
turned to your new IDA install for the moment, let’s take an initial look at
the basic layout. An understanding of the IDA directory structure will become
more important as you progress to using the more advanced features of IDA
covered later in the book. A brief description of each of the subdirectories
within the IDA installation follows (for Windows and Linux users, these

are found under <IDADIR>; for OS X users, these will be found under
<IDADIR>/idag.app/Contents/MacOS):

cfg
The cfg directory contains various configuration files, including the
basic IDA configuration file ida.cfg, the GUI configuration file idagui.cfg,
and the text-mode user interface configuration file idatui.cfg. Some of
the more useful configuration capabilities of IDA will be covered in
Chapter 11.

idc
The idc directory contains the core files required by IDA’s built-in script-
ing language, IDC. Scripting with IDC will be covered in more detail in
Chapter 15.

ids
The ids directory contains symbol files (IDS files in IDA parlance) that
describe the content of shared libraries that may be referenced by binaries
loaded into IDA. These IDS files contain summary information that lists
all entries that are exported from a given library. These entries describe
the type and number of parameters that a function requires, the return
type (if any) of a function, and the calling convention utilized by the
function.

loaders
The loaders directory contains IDA extensions that are used during the
file-loading process to recognize and parse known file formats such as PE
or ELF files. IDA loaders will be discussed in more detail in Chapter 18.

plugins
The plugins directory contains IDA modules designed to provide addi-
tional, and in most cases user-defined, behavior for IDA. IDA plug-ins
will be discussed in greater detail in Chapter 17.

procs
The procs directory contains the processor modules supported by the
installed version of IDA. Processor modules provide the machine-
language-to-assembly-language translation capability within IDA and are
responsible for generating the assembly language displayed in the IDA
user interface. IDA processor modules will be discussed in more detail
in Chapter 19.

sig
The sig directory contains signatures for existing code that IDA utilizes
for various pattern-matching operations. It is through such pattern
matching that IDA can identify sequences of code as known library code,
potentially saving you significant amounts of time in the analysis process.
The signatures are generated using IDA’s Fast Library Identification and
Recognition Technology (FLIRT), which will be covered in more detail
in Chapter 12.

IDA Pro Background 39

40

til
The til directory contains type library information that IDA uses to record
the layout of data structures specific to various compiler libraries. Cus-
tomizing IDA type libraries will be discussed further in Chapter 13.

Thoughts on IDA’s User Interface

IDA’s MS-DOS heritage remains evident to this day. Regardless of the inter-
face (text or GUI) that you happen to be using, IDA makes extensive use

of hotkeys. While this is not necessarily a bad thing, it can yield unexpected
results if you believe that you are in a text-entry mode and find that nearly
every keystroke leads IDA to perform some hotkey action. For example, this
can happen while using the GUI if you position the cursor to make a change
and are expecting that anything you type will appear at the cursor location
(IDA is not your mother’s word processor).

From a data-entry perspective, IDA accepts virtually all of its input via
dialogs, so if you are attempting to enter any data at all into IDA, do make
sure you see a dialog in which to enter that data. The one exception is IDA’s
hex-editing feature, which is only available via the Hex View window.

A final point worth remembering is this: There is no undo in IDA! If you
inadvertently press a key that happens to initiate a hotkey action, do not
waste any time searching for an undo feature within IDA’s menu system—
you will not find one. Nor will you find a command history list to help you
determine what it was you just did.

Summary

Chapter 3

With the mundane details out of the way, it is time to move on to using IDA
to accomplish something useful. Over the course of the next few chapters,
you will discover how to use IDA to perform basic file analysis, learn how to
interpret the IDA data displays, and learn how to manipulate those displays
to further your understanding of a program’s behavior.

PART I

GETTING STARTED WITH IDA

It’s about time we got down to actually

% “, using IDA. The remainder of this book is

\ ‘\\ dedicated to various features of IDA and how
you can leverage them to best suit your reverse

engineering needs. In this chapter we begin by covering

the options you are presented with when you launch

IDA, and then we describe just what is happening when you open a binary
file for analysis. Finally, we’ll present a quick overview of the user interface to
lay the groundwork for the remaining chapters.

For the sake of standardization, examples in both this chapter and the
remainder of the book will be presented with the Windows Qt GUI interface
unless an example requires a specific, different version of IDA (such as an
example of Linux debugging).

44

Launching IDA

NOTE

Chapter 4

Any time you launch IDA, you will be greeted briefly by a splash screen
that displays a summary of your license information. Once the splash
screen clears, IDA displays another dialog offering three ways to proceed
to its desktop environment, as shown in Figure 4-1.

New Disassemble a new file

Go | Work on your own
Load the old disassembly

¥ Display at startup

Figure 4-1: Launching IDA

If you prefer not to see the welcome message, feel free to uncheck the
Display at startup checkbox at the bottom of the dialog. If you check the box,
future sessions will begin as if you had clicked the Go button, and you will
be taken directly to an empty IDA workspace. If at some point you find your-
self longing for the Welcome dialog (after all, it conveniently allows you to
return to recently used files), you will need to edit IDA’s registry key to set
the DisplayWelcome value back to 1. Alternatively, selecting Windows » Reset
hidden messages will restore all previously hidden messages.

When installed on Windows, IDA creates the following registry key: HKEY_CURRENT USER\
Software\Hex-Rays\IDA.! Many options that can be configured within IDA itself (as
opposed to editing one of the configuration files) are stored within this registry key.
However, on other platforms, IDA stores such values in a binary data file ($SHOME/
.idapro/ida.reg) that is not easily edited.

Each of the three options shown in Figure 4-1 offers a slightly different
method to proceed to the IDA desktop. These three launch options are
reviewed here:

New
Choosing New opens a standard File Open dialog to select the file to be
analyzed. Following file selection, one or more additional dialogs are dis-
played that allow you to choose specific file-analysis options before the
file is loaded, analyzed, and displayed.

1. Older versions of IDA used HKEY_CURRENT_USER\Software\Datarescue\IDA.

Go
The Go button terminates the load process and causes IDA to open with
an empty workspace. At this point, if you want to open a file, you may
drag and drop a binary file onto your IDA desktop, or you may use one
of the options from the File menu to open a file. The File » Open com-
mand results in a File Open dialog, as described previously. By default,
IDA utilizes a known extensions filter to limit the view of the File dialog.
Make sure that you modify or clear the filter (such as choosing All Files)
so that the File dialog correctly displays the file you are interested in
opening.?2 When you open a file this way, IDA attempts to automatically
identify the selected file’s type; however, you should pay careful atten-
tion to the Loading dialog to see which loaders have been selected to
process the file.

Previous
You should utilize the Previous button when you wish to open one of the
files in the list of recent files that is directly below the Previous button.
The list of recently used files is populated with values from the History
subkey of IDA’s Windows registry key (or ida.reg on non-Windows plat-
forms). The maximum length of the history list is initially set to 10, but
this limit may be raised as high as 100 by editing the appropriate entry in
idagui.cfg or idatui.cfg (see Chapter 11). Utilizing the history list is the
most convenient option for resuming work on recently used database
files.

IDA File Loading

When choosing to open a new file using the File » Open command, you will
be presented with the loading dialog shown in Figure 4-2. IDA generates a
list of potential file types and displays that list at the top of the dialog. This list
represents the IDA loaders that are best suited for dealing with the selected
file. The list is created by executing each of the file loaders in IDA’s loaders
directory in order to find any loaders® that recognize the new file. Note that
in Figure 4-2, both the Windows PE loader (pe.ldw) and the MS-DOS EXE
loader (dos.ldw) claim to recognize the selected file. Readers familiar with
the PE file format will not be surprised by this, as the PE file format is an
extended form of the MS-DOS EXE file format. The last entry in the list,
Binary File, will always be present since it is IDA’s default for loading files
that it does not recognize, and this provides the lowest-level method for load-
ing any file. When offered the choice of several loaders, it is not a bad initial
strategy to simply accept the default selection unless you possess specific
information that contradicts IDA’s determination.

2. On non-Windows systems, it is not uncommon for executable files to have no file extension
at all.

3. IDA loaders will be discussed further in Chapter 18.

Getting Started with IDA 45

46

Chapter 4

4 Load a new file 2=l

M5-DOS executable (EXE) [dos.Idw]
Binary file

Processor type

IInheI B80x86 processors: metapc LI Set |
—Analysis
Loading segment IDxDDDDDDDD
¥ Enabled

Loading offset IDxDDDDDDDD [V Indicator enabled

—Options

v
¥ Create segments Kernel options 1 |

[™ Load resources

¥ Rename DLL entries
™ Manual load Kernel options 2

¥ Fillsegment gaps

¥ Make imports segment Processor options |

[™ Create FLAT group

System DLL directory |C:\Windows

OK I Cancel | Help |

Figure 4-2: The IDA Load a New File dialog

At times, Binary File will be the only entry that appears in the loader list.
In such cases, the implied message is that none of the loaders recognize the
chosen file. If you opt to continue the loading process, make sure that you
select the processor type in accordance with your understanding of the file
contents.

The Processor Type drop-down menu allows you to specify which pro-
cessor module (from IDA’s procs directory) should be used during the disa-
ssembly process. In most cases, IDA will choose the proper processor based
on information that it reads from the executable file’s headers. When IDA
can’t properly determine the processor type associated with the file being
opened, you will need to manually select a processor type before continuing
with the file-loading operation.

The Loading Segment and Loading Offset fields are active only when
the Binary File input format is chosen in conjunction with an x86 family
processor. Since the binary loader is unable to extract any memory layout
information, the segment and offset values entered here are combined to
form the base address for the loaded file content. Should you forget to specify
a base address during the initial loading process, the base address of the
IDA image can be modified at any time using the Edit » Segments » Rebase
Program command.

The Kernel Options buttons provide access to configure the specific disas-
sembly analysis options that IDA will utilize to enhance the recursive-descent
process. In the overwhelming majority of cases, the default options provide

the best possible disassembly. The IDA help files provide additional informa-
tion on available kernel options.

The Processor Options button provides access to configuration options
that apply to the selected processor module. However, processor options are
not necessarily available for every processor module. Limited help is available
for processor options as these options are very highly dependent on the
selected processor module and the programming proficiency of the module’s
author.

The remaining Options checkboxes are used to gain finer control over
the file-loading process. Each of the options is described further in IDA’s
help file. The options are not applicable to all input file types, and in most
cases, you can rely on the default selections. Specific cases when you may
need to modify these options will be covered in Chapter 21.

Using the Binary File Loader

When you opt to utilize the binary loader, you need to be prepared to do more
than your usual share of the processing work. With no file header information
to guide the analysis process, it is up to you to step in and perform tasks that
more capable loaders often do automatically. Examples of situations that
may call for the use of the binary loader include the analysis of ROM images
and exploit payloads that may have been extracted from network packet
captures or log files.

When the x86 processor module is paired with the binary loader, the dia-
log shown in Figure 4-3 will be displayed. With no recognizable file headers
available to assist IDA, it is up to the user to specify whether code should be
treated as 16-bit or 32-bit mode code. Other processors for which IDA can
distinguish between 16- and 32-bit modes include ARM and MIPS.

s The loaded binary file can be disassembled in 2 modes:
1, 16-bit mode

2. 32-bit mode
Do you want to disassemble it as 32-bit code?

Yes Mo

Figure 4-3: x86 mode selection

Binary files contain no information concerning their memory layout
(at least no information that IDA knows how to recognize). When an x86
processor type has been selected, base address information must be specified
in the loader dialog’s Loading Segment and Loading Offset fields, as men-
tioned earlier. For all other processor types, IDA displays the memory layout
dialog shown in Figure 4-4. As a convenience, you may create a RAM section,
a ROM section, or both and designate the address range of each. The Input
File options are used to specify which portion of the input file (the default
is the entire file) should be loaded and to which address the file content
should be mapped.

Getting Started with IDA 47

48

—RAM

[™ Create RAM section

RAM start address | 0x00000000

RAM size | oxoo000000

—ROM

¥ Create ROM section

ROM start address | 0x00000000

ROM size I 0x000000AS

—Input file

Loading address | 0x00000000

File offset | oxo0000000

Loading size | 0x00000DAS

Additional binary files can be loaded into the database
using the File, Load file, Addtional binary file™ command.

oK I Cancel |

Figure 4-4: The Memory Organization dialog

Figure 4-5 shows the last step of a binary load—a gentle reminder that
you need to do some work. The message highlights the fact that IDA has no
header information available to help it distinguish code bytes from data bytes
in the binary file. At this point, you are reminded to designate one of the
addresses in the file as an entry point by telling IDA to turn the byte(s) at
that address into code (C is the hotkey used to force IDA to treat a byte as
code). For binary files, IDA will not perform any initial disassembly until you
take the time to identify at least one byte as code.

@ You have just loaded a binary file.

IDA Pro can't identify the entry point automatically as
there is no standard of binaries.

Please move to what you think is an entry point
and press 'C' to start the autoanalysis.

[o |

™ Don't display this message again

Figure 4-5: Binary file loading

IDA Database Files

Chapter 4

When you are happy with your loading options and click OK to close the
dialog, the real work of loading the file begins. At this point, IDA’s goal
is to load the selected executable file into memory and to analyze the
relevant portions. This results in the creation of an IDA database whose

components are stored in four files, each with a base name matching the
selected executable and whose extensions are .id0, .id1, .nam, and .til. The
.id0 file contains the content of a B-tree—style database, while the .id1 file
contains flags that describe each program byte. The .nam file contains index
information related to named program locations as displayed in IDA’s Names
window (discussed further in Chapter 5). Finally, the .til file is used to store
information concerning local type definitions specific to a given database.
The formats of each of these files are proprietary to IDA, and they are not
easily edited outside of the IDA environment.

For convenience, these four files are archived, and optionally compressed,
into a single IDB file whenever you close your current project. When people
refer to an IDA database, they are typically referring to the IDB file. An uncom-
pressed database file is usually 10 times the size of the original input binary
file. When the database is closed properly, you should never see files with
.id0, .id1, .nam, or .til extensions in your working directories. Their presence
often indicates that a database was not closed properly (for example, when
IDA crashes) and that the database may be corrupt.

LOADER WARNINGS

Once a loader begins to analyze a file, it may encounter circumstances that require
additional user input in order to complete the loading process. One example of this
occurs with PE files that have been created with PDB debugging information. If IDA
determines that a Program Database (PDB) file may exist, you will be asked whether
you want IDA to locate and to process the corresponding PDB file as shown in this
message:

IDA Pro has determined that the input file was linked with debug
information. Do you want to look for the corresponding PDB file at
the local symbol store and the Microsoft Symbol Server?

A second example of a loader-generated informational message occurs with
obfuscated programs such as malware. Obfuscation techniques often play fast
and loose with file format specifications, which can cause problems for loaders
expecting well-structured files. Knowing this, the PE loader performs some validation
on import tables, and if the import tables do not seem to be formatted according to
convention, IDA will display the following message:

The imports segment seems to be destroyed. This MAY mean that the
file was packed or otherwise modified in order to make it more
difficult to analyze. If you want to see the imports segment in the
original form, please reload it with the ‘make imports section’
checkbox cleared.

Examples of this error and how to deal with it will be covered in Chapter 21.

It is important to understand that once a database has been created for
a given executable, IDA no longer requires access to that executable unless
you intend to use IDA’s integrated debugger to debug the executable itself.
From a security standpoint, this is a nice feature. For instance, when you are
analyzing a malware sample, you can pass the associated database among

Getting Started with IDA 49

50

Chapter 4

analysts without passing along the malicious executable itself. There are no
known cases in which an IDA database has been used as an attack vector for
malicious software.

At its heart, IDA is nothing more than a database application. New
databases are created and populated automatically from executable files.
The various displays that IDA offers are simply views into the database that
reveal information in a format useful to the software reverse engineer. Any
modifications that users make to the database are reflected in the views and
saved with the database, but these changes have no effect on the original
executable file. The power of IDA lies in the tools it contains to analyze and
manipulate the data within the database.

IDA Database Creation

Once you have chosen a file to analyze and specified your options, IDA ini-
tiates the creation of a database. For this process, IDA turns control over to
the selected loader module, whose job it is to load the file from disk, parse
any file-header information that it may recognize, create various program
sections containing either code or data as specified in the file’s headers, and,
finally, identify specific entry points into the code before returning control
to IDA. In this regard, IDA loader modules behave much as operating system
loaders behave. The IDA loader will determine a virtual memory layout
based on information contained in the program file headers and configure
the database accordingly.

Once the loader has finished, the disassembly engine within IDA takes
over and begins passing one address at a time to the selected processor
module. The processor module’s job is to determine the type of instruction
located at that address, the length of the instruction at that address, and the
location(s) at which execution can continue from that address (e.g., is the
current instruction sequential or branching?). When IDA is comfortable that
it has found all of the instructions in the file, it makes a second pass through
the list of instruction addresses and asks the processor module to generate the
assembly language version of each instruction for display.

Following this disassembly, IDA automatically conducts additional analysis
of the binary file to extract additional information likely to be useful to the
analyst. Users can expect to find some or all of the following information
incorporated into the database once IDA completes its initial analysis:

Compiler identification
It is often useful to know what compiler was used to build a piece of
software. ldentifying the compiler that was used can help us understand
function-calling conventions used in a binary as well as determine what
libraries the binary may be linked with. When afile is loaded, IDA attempts
to identify the compiler that was used to create the input file. If the
compiler can be identified, the input file is scanned for sequences of
boilerplate code known to be used by that compiler. Such functions are
color coded in an effort to reduce the amount of code that needs to be
analyzed.

Function argument and local variable identification
Within each identified function (addresses that are targets of call
instructions), IDA performs a detailed analysis of the behavior of the
stack pointer register in order to both recognize accesses to variables
located within the stack and understand the layout of the function’s
stack frame.* Names are automatically generated for such variables based
on their use as either local variables within the function or as arguments
passed into the function as part of the function call process.

Datatype information
Utilizing knowledge of common library functions and their required
parameters, IDA adds comments to the database to indicate the locations
at which parameters are passed into these functions. These comments
save the analyst a tremendous amount of time by providing information
that would otherwise need to be retrieved from various application pro-
gramming interface (API) references.

Closing IDA Databases

Any time you close a database, whether you are closing IDA altogether or
simply switching to a different database, you are presented with the Save
Database dialog, as shown in Figure 4-6.

IDA will save all changes to the disk.

{~ Don't pack database
{* Pack database (Store)

{~ Pack database (Deflate)

™ Collect garbage
[~ DONT SAVE the database

OK I Cancel | Help |

Figure 4-6: The Save Database dialog

If this is the initial save of a newly created database, the new database file-
name is derived from the input filename by replacing the input extension
with the .idb extension (e.g., example.exe yields a database named example.idb).
When the input file has no extension, .idb is appended to form the name of
the database (e.g., httpd yields httpd.idb). The available save options and their
associated implications are summarized in the following list:

Don’t pack database
This option simply flushes changes to the four database component files
and closes the desktop without creating an IDB file. This option is not
recommended when closing your databases.

4. Stack frames are discussed further in Chapter 6.

Getting Started with IDA 51

52

Chapter 4

Pack database (Store)
Selecting the Store option results in the four database component files
being archived into a single IDB file. Any previous IDB will be overwritten
without confirmation. No compression is used with the Store option.
Once the IDB file has been created, the four database component files
are deleted.

Pack database (Deflate)
The Deflate option is identical to the Store option, with the exception
that the database component files are compressed within the IDB
archive.

Collect garbage
Requesting garbage collection causes IDA to delete any unused memory
pages from the database prior to closing it. Select this option in conjunc-
tion with Deflate in order to create the smallest possible IDB file. This
option is not generally required unless disk space is at a premium.

DON'T SAVE the database
You may wonder why anyone would choose not to save his work. It turns
out that this option is the only way to discard changes that you have made
to a database since the last time it was saved. When this option is selected,
IDA simply deletes the four database component files and leaves any
existing IDB file untouched. Using this option is as close as you will get
to an undo or revert capability while using IDA.

Reopening a Database

Granted, reopening an existing database doesn’t involve rocket science,’ so
you may be wondering why this topic is covered at all. Under ordinary cir-
cumstances, returning to work on an existing database is as simple as select-
ing the database using one of IDA’s file-opening methods. Database files
open much faster the second (and subsequent) time around because there
is no analysis to perform. As an added bonus, IDA restores your IDA desktop
to the same state it was in at the time it was closed.

Now for the bad news. Believe or not, IDA crashes on occasion. Whether
because of a bug in IDA itself or because of a bug in some bleeding-edge
plug-in you have installed, crashes leave open databases in a potentially cor-
rupt state. Once you restart IDA and attempt to reopen the affected data-
base, you are likely to see one of the dialogs shown in Figures 4-7 and 4-8.

IDA has found unpacked version of database C:\IdaBook\SecondEdition\example.idb
on the disk. Please choose:

Restore packed base I Continue with unpacked base | Cance| |

Figure 4-7: Database Restore dialog

5. Unless you happen to be opening rocket_science.idb.

When IDA crashes, there is no opportunity for IDA to close the active
database, and the intermediate database files do not get deleted. If this was
not the first time that you were working with a particular database, you may
have a situation in which both an IDB file and potentially corrupt intermedi-
ate files are present at the same time. The IDB file represents the last-known
good state of the database, while the intermediate files contain any changes
that may have been made since the last save operation. In this case, you will
be offered the choice to revert to the saved version or resume use of the open,
potentially corrupt version, as shown in Figure 4-7. Choosing Continue with
Unpacked Base by no means guarantees that you will recover your work. The
unpacked database is probably in an inconsistent state, which will prompt
IDA to offer the dialog shown in Figure 4-8. In this case, IDA itself recom-
mends that you consider restoring from the packed data, so consider yourself
warned if you opt to go with a repaired database.

% Database for file 'C:\IdaBook\SecondEdition\example.idD' isn't dosed. Do you want IDA
| to repair it?

Flease note that the repaired database may still have problems.
The best solution is to use the packed database or a backup.

Yes Mo | Cancel Help

Figure 4-8: Database Repair dialog

When an active database has never been saved, thus leaving only inter-
mediate files present at the time of the crash, IDA offers the repair option in
Figure 4-8 as soon as you try to open the original executable file again.

Introduction to the IDA Desktop

Given the amount of time you are likely to spend staring at your IDA desktop,

you will want to spend some time familiarizing yourself with its various compo-

nents. Figure 4-9 shows an overview of a default IDA desktop. The behavior

of the desktop during file analysis is discussed in the following section.
Areas of interest in this introductory view include the following:

1. The toolbar area ® contains tools corresponding to the most commonly
used IDA operations. Toolbars are added to and removed from the
desktop using the View » Toolbars command. Using drag-and-drop, you
can reposition each of the toolbars to suit your needs. Figure 4-9 shows
IDA’s basic mode toolbar with a single row of tool buttons. An advanced
mode toolbar is available using View » Toolbars » Advanced mode. The
Advanced mode toolbars contain three full rows of tool buttons.

Getting Started with IDA 53

54

Chapter 4

A - (:\TdaRnok\SecondFdition\chd_example.exe =[0] x|
[\ aRnok ndFd hd, le. ful

B E] = =[5+ v @0 & & % X > 0 Ofees STEE O

f v
1B 1o | 11 [T |
|7 | Functions window 8 x| [FHmwavenaD | (T rexcviens] | A structwes (1 | [F Bums (3 | 53 mports [| = Bpors (1] €
Fincfion name. =
sub_401000
[F] mh_aninan
e @ -
(7] sub_s01170
7] amsa exit
[7] __cricorsiterocess : Attributes: bp-based frame
| f| __ ertExitProcess R
7] Tocext ; int _ cdecl main(int argo, const char **argv, conmst char **envp)
7] Turdockmat _main proc near
L] W:”" var 10- dword ptr 10h o
|E i var_C= dword ptr -0Ch
(7] b s12s e g
7] stb_401261 var_d4= aword ptr -4
7] _mt_ argc= dword ptr 8
IT‘ daexit Ll_l argv= dword ptr 0Ch
Kl S| envp= dword ptr 10h
Uine 10220 N
| b, Graph overview 8 x| pusn ebp
mow ebp, esp
- sub esp, 10h
mow [ebptvar 81, O
5 mow [ebptvar 41, O
mov eax, (ebptaravl
0-00% [{105%, 18y (702, 207 [00001076 [65401670: maia 7
| [=] Gutput nindow a8 x|
The hotkeys are FS: decompile, Ctzl-F5: decompile all. =)

Please check the Edit/Plugins menu for more informaton.
Can not set debug privilege: Not all privileges or groups referenced are assigned te the caller.

Dython 2 & 5 (rPA5-T909R, Mar 19 2010, 21-4A-F&) [MSC w 1500 97 hit (Tneal)]

IDAPython v1.4.2 final (serial 0} (c) The IDAPython Team <idapython@googlegroups.com> G

Using ELLKI signavure: MICEOSOIG ViSuall Z-1U/net runtime

Propageving type informsvion. . |
Function srgument informstion has bssn propagated |
Python [

[au: tale [pewn ptax- 1s0c8 7

Figure 4-9: The IDA desktop

The horizontal color band is IDA’s overview navigator @, also called the
navigation band. The navigation band presents a linear view of the address
space of the loaded file. By default, the entire address range of the binary
is represented. You can zoom in and out of the address range by right-
clicking anywhere within the navigation band and selecting one of the
available zoom options. Different colors represent different types of file
content, such as data or code. A small current position indicator (yellow by
default) points at the navigation band address that corresponds to the
current address range being displayed in the disassembly window. Hover-
ing the mouse cursor over any portion of the navigation band yields a tool
tip that describes that location in the binary. Clicking the navigation band
jumps the disassembly view to the selected location within the binary. The
colors used in the navigation band can be customized using the Options »
Colors command. Dragging the navigation band away from the IDA
desktop yields a detached Overview Navigator, as shown in Figure 4-10.
Also shown in Figure 4-10 is the current position indicator (the half-
length, downward-facing arrow to the left of location @) and a color key
identifying the file content by functional groups.

Mavigator Scale: 1 pixel = 123 bytes; Range: 00401000-0040ECS0 Library function Data
Il o | | (B B | -t
4 4 M 1nstruction W External symbol

Additional display: I VI

Figure 4-10: The Overview Navigator

Coming back to Figure 4-9, tabs ® are provided for each of the currently
open data displays. Data displays contain information extracted from the
binary and represent the various views into the database. The majority
of your analysis work is likely to take place through interaction with the
available data displays. Figure 4-9 shows three of the available data dis-
plays: IDA-View, Functions, and Graph Overview. Additional data dis-
plays are available via the View » Open Subviews menu, and this menu
is also used to restore any displays that have been closed, whether on
purpose or inadvertently.

The disassembly view @ is the primary data display. Two display styles are
available for the disassembly view: graph view (default) and listing view.
In graph view, IDA displays a flowchart-style graph of a single function at
any given time. When this is combined with the graph overview, you can
gain an understanding of the flow of the function using a visual break-
down of the function’s structure. When the IDA-View window is active,
the spacebar toggles between graph view-style and listing-style displays.
If you wish to make listing view your default, you must uncheck Use
graph view by default on the Graph tab via the Options » General menu,
as shown in Figure 4-11.

4 IDA Options 3 21
Disassembly | Analysis | Crosseferences | Strings | Browser Graph | Misc |
™ Use graph view by default
V¥ Enable graph animation
¥ Draw node shadows
™ Auto fit graph into window
[V Fit window max zoom level 100%
¥ Redayout graph if nodes gverlap
V¥ Redayout graph upon screen refresh
™ Truncate at the right margin
™ Lock graph layout

Maximum number of nodes | 1000

oK I Cancel Help

Figure 4-11: IDA graph options

In graph view, it is seldom possible to fit the entire graph of a function
into the display area at one time. The graph overview @, present only
when graph view is active, provides a zoomed-out snapshot of the basic
graph structure. A dotted rectangle indicates the current display within
the graph view. Clicking within the graph overview repositions the graph
view accordingly.

Getting Started with IDA 55

56

6. The Output window ® is where you can expect to find any informational
messages generated by IDA. Here you will find status messages concern-
ing the progress of the file-analysis phase, along with any error mes-
sages resulting from user-requested operations. The Output window
roughly equates to a console output device.

7. The Functions window @ rounds out the default IDA display windows
and will be discussed further in Chapter 5.

Desktop Behavior During Initial Analysis

Chapter 4

A tremendous amount of activity takes place within the IDA desktop during
the initial autoanalysis of a newly opened file. You can gain an understanding
of this analysis by observing various desktop displays during the analysis pro-
cess. Desktop activity you may observe includes the following:

e Progress messages printed to the Output window

o Initial location and disassembly output generated for the disassembly
window

o Initial population of the Functions window, followed by periodic updates
as the analysis progresses

o Transformation of the navigation band as new areas of the binary are
recognized as code and data, blocks of code are further recognized as
functions, and, finally, functions are recognized specifically as library
code using IDA’s pattern-matching techniques

e The current position indicator traversing the navigation band to show
the regions currently being analyzed

The following output is representative of messages generated by IDA
during the initial analysis of a newly opened binary file. Notice that the
messages form a narrative of the analysis process and offer insight into the
sequence of operations performed by IDA during that analysis.

Loading file 'C:\IdaBook\ch4_example.exe' into database...
Detected file format: Portable executable for 80386 (PE)

0. Creating a new segment (00401000-0040C000) 0K

1. Creating a new segment (0040C000-0040E000) 0K

2. Creating a new segment (0040E000-00411000) OK
Reading imports directory...

3. Creating a new segment (0040C120-0040E000) 0K

Plan FLIRT signature: Microsoft VisualC 2-10/net runtime

autoload.cfg: vc32rtf.sig autoloads mssdk.til

Assuming _ cdecl calling convention by default

main() function at 401070, named " main"

Marking typical code sequences...

Flushing buffers, please wait...ok

File 'C:\IdaBook\ch4 example.exe' is successfully loaded into the database.
Compiling file 'C:\Program Files\IdaPro\idc\ida.idc'...

Executing function 'main'...
Compiling file 'C:\Program Files\IdaPro\idc\onload.idc'...
Executing function 'OnLoad’...
IDA is analysing the input file...

O You may start to explore the input file right now.
Python 2.6.5 (1r265:79096, Mar 19 2010, 21:48:26) [MSC v.1500 32 bit (Intel)]
IDAPython v1.4.2 final (serial 0) (c) The IDAPython Team
<idapython@googlegroups.com>
Using FLIRT signature: Microsoft VisualC 2-10/net runtime
Propagating type information...
Function argument information has been propagated

® The initial autoanalysis has been finished.

Two particularly helpful progress messages are You may start to explore
the input file right now @ and The initial autoanalysis has been finished
®. The first message informs you that IDA has made enough progress with
its analysis that you can begin navigating through the various data displays.
Navigating does not imply changing, however, and you should wait to make
any changes to the database until the analysis phase has been completed. If
you attempt to change the database prior to completion of the analysis phase,
the analysis engine may come along later and modify your changes further,
or you may even prevent the analysis engine from doing its job correctly. The
second of these messages, which is fairly self-explanatory, indicates that you
can expect no more automatic changes to take place in the desktop data dis-
plays. At this point it is safe to make any changes you like to the database.

IDA Desktop Tips and Tricks

IDA offers a tremendous amount of information, and its desktop can become
cluttered. Here are some tips for making the best use of your desktop:

e The more screen real estate you dedicate to IDA, the happier you will be.
Use this fact to justify the purchase of a king-size monitor (or two)!

o Don’t forget the View » Open Subviews command as a means of restoring
data displays that you have inadvertently closed.

e The Windows » Reset Desktop command offers a useful way to quickly
restore your desktop to its original layout.

o Utilize the Windows » Save Desktop command to save a current layout of
desktop configurations that you find particularly useful. The Windows »
Load Desktop command is used to quickly revert to a saved layout.

e The only window for which the display font can be changed is the
Disassembly window (either graph or listing view). Fonts are set using
the Options » Font command.

Getting Started with IDA 57

58

Reporting Bugs

As with any piece of software, IDA has been known to contain an occasional
bug, so what can you expect from Hex-Rays if you think you have found a
bug in IDA itself? First, Hex-Rays has one of the most responsive support sys-
tems you can will ever deal with. Second, don’t be surprised if you hear back
from llIfak himself within a day of submitting a support request.

Two methods are available for submitting bug reports. You can send
email to support@hex-rays.com, or if you prefer not to use email, you may post
to the Bug Reports forum on the Hex-Rays bulletin boards. In either case,
you should both verify that you can reproduce your bug and be prepared to
provide Hex-Rays with a copy of the database file involved with the problem.
Recall that Hex-Rays only provides SDK support for an additional fee. For
bugs related to a plug-in that you have installed, you will need to contact the
plug-in’s author. For bugs related to a plug-in that you are developing, you
will need to take advantage of the support forums available for IDA users and
hope for a helpful response from a fellow user.

Summary

Chapter 4

Familiarity with the IDA workspace will greatly enhance your experience with
IDA. Reverse engineering binary code is difficult enough without having to
struggle with your tools. The options that you choose during the initial load-
ing phase and the subsequent autoanalysis performed by IDA set the stage
for all of the analysis that you will do later. At this point you may be content
with the work that IDA has accomplished on your behalf, and for simple
binaries, autoanalysis may be all that you need. On the other hand, if you
wonder what puts the interactive in IDA, you are now ready to dive deeper
into the functionality of IDA’s many data displays. In the coming chapters
you will be introduced to each of the primary displays, the circumstances
under which you will find each one useful, and how to utilize these displays
to enhance and update your databases.

IDA DATA DISPLAYS

At this point you should have some confi-
dence loading binaries into IDA and letting
IDA work its magic while you sip your favorite
beverage. Once IDA’s initial analysis phase is com-
plete, it is time for you to take control. One of the best

ways for you to familiarize yourself with IDA’s displays is
simply to browse around the various tabbed subwindows that IDA populates
with data about your binary. The efficiency and effectiveness of your reverse
engineering sessions will improve as your comfort level with IDA increases.

Before we dive into the major IDA subdisplays, it is useful to cover a few
basic rules concerning IDA’s user interface:

There is no undo in IDA.
If something unexpected happens to your database as a result of an
inadvertent keypress, you are on your own to restore your displays to
their previous states.

60

Almost all actions have an associated menu item, hotkey, and toolbar button.
Remember, the IDA toolbar is highly configurable, as is the mapping of
hotkeys to menu actions.

IDA offers good, context-sensitive menu actions in response to right mouse
clicks.
While these menus do not offer an exhaustive list of permissible actions
at a given location, they do serve as good reminders for the most common
actions you will be performing.

With these facts in mind, let’s begin our coverage of the principal IDA
data displays.

The Principal IDA Displays

Chapter 5

In its default configuration, IDA creates seven (as of version 6.1) display win-
dows during the initial loading-and-analysis phase for a new binary. Each of
these display windows is accessible via a set of title tabs displayed immediately
beneath the navigation band (shown previously in Figure 4-9). The three
immediately visible windows are the IDA-View window, the Functions window,
and the Output window. Whether or not they are open by default, all of the
windows discussed in this chapter can be opened via the View » Open Sub-
views menu. Keep this fact in mind, as it is fairly easy to inadvertently close
the display windows.

The Esc key is one of the more useful hotkeys in all of IDA. When the
disassembly window is active, the Esc key functions in a manner similar to
a web browser’s back button and is therefore very useful in navigating the
disassembly display (navigation is covered in detail in Chapter 6). Unfor-
tunately, when any other window is active, the esc key serves to close the win-
dow. Occasionally, this is exactly what you want. At other times, you will
immediately wish you had that closed window back.

The Disassembly Window

Also known as the IDA-View window, the disassembly window will be your
primary tool for manipulating and analyzing binaries. Accordingly, it is
important that you become intimately familiar with the manner in which
information is presented in the disassembly window.

Two display formats are available for the disassembly window: the default
graph-based view and a text-oriented listing view. Most IDA users tend to pre-
fer one view over the other, and the view that better suits your needs is often
determined by how you prefer to visualize a program’s flow. If you prefer to
use the text listing view as your default disassembly view, you can change the
default by using the Options » General dialog to turn off Use graph view by
default on the Graph tab. Whenever the disassembly view is active, you can
easily switch between graph and listing views at any time by using the spacebar.

IDA Graph View

Figure 5-1 shows a very simple function displayed in graph view. Graph views
are somewhat reminiscent of program flowcharts in that a function is broken
up into basic blocks® so you can visualize the function’s control flow from
one block to another.

IDA View-A i |

Ll e 53

: Attribmntes: bp-based frame
sub 4011B5 proc near

arg 0= dword ptr &
arg_ 4= dword ptr OCh
arg f= dword ptr 10h

push ebp

mov ebp, esp

mov ecx, [ebptarg 8]
mov edx, [ebptarg 4]
mov eax, [ebptarg 0]
test ecx, ecx

jz short loc 4011D1

—T

=" e ay=e|

loc 4011C5:
test edx, edx
jz short loc 4011CC

I
¥ ¥

= e ay=e| =" e aye]

dec eax
Jmp short loc 4011CDJ |loc 4011CC:

= e

loc 4011CD:
test ecx, ecx
jnz short loc 4011C5

—.*Hl

=" e ay=e]

loc 4011D1:

pop ebp
retn

sub 4011B5 endp

100-00% [(-38,-8) [1272, 0) [000000B5 [004011B5- sub 4011B5

Figure 5-1: IDA graph view

1. A basic block is a maximal sequence of instructions that executes, without branching, from
beginning to end. Each basic block therefore has a single entry point (the first instruction in
the block) and a single exit point (the last instruction in the block). The first instruction in a
basic block is often the target of a branching instruction, while the last instruction in a basic
block is often a branch instruction.

IDA Data Displays 61

62

Chapter 5

Onscreen, you’ll notice IDA uses different colored arrows to distinguish
various types of flows? between the blocks of a function. Basic blocks that ter-
minate with a conditional jump generate two possible flows depending on
the condition being tested: the Yes edge arrow (yes, the branch is taken) is
green by default, and the No edge arrow (no, the branch is not taken) is red
by default. Basic blocks that terminate with only one potential successor block
utilize a Normal edge (blue by default) to point to the next block to be executed.

In graph mode, IDA displays one function at a time. For users with a
wheel mouse, graph zooming is possible using the cTrRL-wheel combination.
Keyboard zoom control requires CTRL-+ to zoom in or CTRL-— to zoom out
(using the + and — keys on the numeric keypad). Large or complex functions
may cause the graph view to become extremely cluttered, making the graph
difficult to navigate. In such cases, the Graph Overview window (see Figure 5-2)
is available to provide some situational awareness. The overview window always
displays the complete block structure of the graph along with a dashed frame
that indicates the region of the graph currently being viewed in the disas-
sembly window. The dashed frame can be dragged across the overview window
to rapidly reposition the graph view to any desired location on the graph.

|
e e

] || j
=0

Figure 5-2: The Graph Overview window

With the graph display, there are several ways that you can manipulate
the view to suit your needs:

Panning
First, in addition the using the Graph Overview window to rapidly
reposition the graph, you can also reposition the graph by clicking and
dragging the background of the graph view.

2. IDA uses the term flow to indicate how execution can continue from a given instruction. A
normal (also called ordinary) flow indicates default sequential execution of instructions. A jump
flow indicates that the current instruction jumps (or may jump) to a nonsequential location. A
call flow indicates that the current instruction calls a subroutine.

HEY, ISN'T SOMETHING MISSING HERE?

When using graph view, it may seem as if less information is available to you about
each line of the disassembly. The reason for this is that IDA chooses to hide many of
the more traditional pieces of information about each disassembled line (such as
virtual address information) in order to minimize the amount of space required to
display each basic block. You can choose to display additional information with
each disassembly line by choosing among the available disassembly line parts
accessible via the Disassembly tab from Options » General. For example, to add
virtual addresses to each disassembly line, we enable line prefixes, transforming the

graph from Figure 5-1 i

nto the graph shown in Figure 5-3.

=" ey

004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B5
004011B6
004011B8
004011BB
0OD4011BE
0o4011C1
004011C3

: Attribuntes: bp-based frame
sub 4011B5 proc near

arg 0= dword ptr &
arg_ 4= dword ptr OCh
arg_f= dword ptr 10h

push
mov
mov
mov

ebp

ebp, esp

ecx, [ebptarg 8]
edx, [ebptarg 4]
mov eax, [ebptarg 0]
test ecx, ecx

jz short loc 4011D1

I
L2]

Ll e 53

004011C5

004011C5 loc 4011C5:

004011C5 test edx, edx
004011C7 Jj=z short loc 4011CC

o
¥ ¥

=" ey

=" e ay=e]

004011C9 dec
004011CA Jjmp

eax oo4011cC

short loc 4011CD

004011CC inc

004011CC loc 4011CC:

eax

v ¥

=)

]

oo401
oo401
oo401
oo401

1CD

1CD loc 4011CD:

1CD test ecx, ecx

1CF jn=z short loc 4011C5

1
vy

=" e ay=e|

004011D1
004011D1
004011D1
004011D2
004011D2
004011D2

loc 4011D1:

pop ebp
retn

sub 4011B5 endp

Figure 5-3: Graph view with line prefixes enabled

IDA Data Displays

63

64

Chapter 5

Rearranging blocks
Individual blocks within the graph can be dragged to new positions by
clicking the title bar for the desired block and dragging it to a new
position. Beware that IDA performs only minimal rerouting of any edges
associated with a moved block. You can manually reroute edges by drag-
ging vertices to new locations. New vertices can be introduced into an
edge by double-clicking the desired location within an edge while
holding the sHIFT key. If at any point you find yourself wishing to revert
to the default layout for your graph, you can do so by right-clicking the
graph and choosing Layout Graph.

Grouping and collapsing blocks
Blocks can be grouped, either individually or together with other blocks,
and collapsed to reduce the clutter in the display. Collapsing blocks is a
particularly useful technique for keeping track of blocks that you have
already analyzed. You can collapse any block by right-clicking the block’s
title bar and selecting Group Nodes.

Creating additional disassembly windows
If you ever find yourself wanting to view graphs of two functions simulta-
neously, all you need to do is open another disassembly window using
Views » Open Subviews » Disassembly. The first disassembly window
opened is titled IDA View-A. Subsequent disassembly windows are titled
IDA View-B, IDA View-C, and so on. Each disassembly is independent of
the other, and it is perfectly acceptable to view a graph in one window
while viewing a text listing in another or to view three different graphs
in three different windows.

Keep in mind that your control over the view extends beyond just these
examples. Additional IDA graphing capabilities are covered in Chapter 9,
while more information on the manipulation of IDA’s graph view is available
in the IDA help file.

IDA Text View

The text-oriented disassembly window is the traditional display used for
viewing and manipulating IDA-generated disassemblies. The text display
presents the entire disassembly listing of a program (as opposed to a single
function at a time in graph mode) and provides the only means for viewing
the data regions of a binary. All of the information available in the graph dis-
play is available in the text display in one form or another.

Figure 5-4 shows the text view listing of the same function shown in Fig-
ures 5-1 and 5-3. The disassembly is presented in linear fashion, with virtual
addresses displayed by default. Virtual addresses are typically displayed in a
[SECTION NAME]:[VIRTUAL ADDRESS] format such as .text:004011C1.

o view-A x
. text:004011B5 =]
.text:004011B5 ; =————— SUBROUT I NE
. text:004011B5
.text:004011B5 ; Attributes: bp-based frame
. text:004011B5
.text:004011B5 sub_4011B5 proc near : CODE XREF: _mammupo
. text:004011B5
.text:004011B5 arg 0 = dword ptr 8
. text:004011B5 arg_do = dword ptr 0Ch
.text:004011B5 arg 8 = dword ptr 10h
. text:004011B5

®|. text:004011B5 push ebp
®|. text:004011B6 mov ebp, esp
*/. text:004011B8 mov ecx, [ebptarg 8]
®|. text:004011EB mov edx, [ebptarg 4]
®/|. text:004011BE mov eax, [ebptarg 0]
®|. text:004011C1 test ecx, ecx
[/. text:004011C3 1 jz short loc_4011D1
! o . text:004011C5
I .text:004011C5 loc_4011C5: : CODE XREF: 5ub_4011B5+1A]_Jo
i l'""‘ . text:004011C5 test edx, edx
"0 --"| text:004011C7 jz short loc_4011CC
P ! ®[text:004011C9 dec eax
!t P text:004011CA Jmp short loc_4011CD
Vo . text:004011CC
P ! .text:004011CC
[.text:004011CC loc_4011CC: : CODE XREF: 5ub_4011B5+12TJo
| 1o *® | text:on40110C inc eax
L . text:004011CD
[.text:004011CD loc_4011CD: : CODE XREF: 5ub_4011B5+15TJo
i H ®|. text:004011CD test ecx, ecx
[*|. text:004011CF jnz short loc_4011C5
i . text:004011D1
! .text:004011D1 loc_4011D1: : CODE XREF: sub_4011B5+ET3 o
""" *%| text:004011D1 pop ebp
®|. text:004011D2 retn
.text:004011D2 sub_4011B5 endp
000000C3 |004011C3: sub 4011BS+E —'LI
4| | »

Figure 5-4: The IDA text view

The left portion of the display, seen at @, is called the arrows window
and is used to depict nonlinear flow within a function. Solid arrows represent
unconditional jumps, while dashed arrows represent conditional jumps. When
a jump (conditional or unconditional) transfers control to an earlier address
in the program, a heavy weighted line (solid or dashed) is used. Such reverse
flow in a program often indicates the presence of a loop. In Figure 5-4, a
loop arrow flows from address 004011CF to 004011C5.

The declarations at ® (also present in graph view) represent IDA’s best
estimate concerning the layout of the function’s stack frame.® IDA computes
the structure of a function’s stack frame by performing detailed analysis of the
behavior of the stack pointer and any stack frame pointer used within a func-
tion. Stack displays are discussed further in Chapter 6.

The comments (a semicolon introduces a comment) at © are cross-
references. In this case we see code cross-references (as opposed to data cross-
references), which indicate that another program instruction transfers control
to the location containing the cross-reference comment. Cross-references are
the subject of Chapter 9.

For the remainder of the book we will primarily utilize the text display
for examples. We’ll use the graph display only in cases where it may provide
significantly more clarity. In Chapter 7 we will cover the specifics of manipu-
lating the text display in order to clean up and annotate a disassembly.

3. A stack frame (or activation record) is a block of memory, allocated in a program’s runtime stack,
that contains both the parameters passed into a function and the local variables declared within
the function. Stack frames are allocated upon entry into a function and released as the function
exits. Stack frames are discussed in more detail in Chapter 6.

IDA Data Displays 65

66

The Functions Window

The Functions window is used to list every function that IDA has recognized
in the database. A Functions window entry might look like the following:

malloc .text 00BDC260 00000180 R . . . B . .

This particular line indicates that the malloc function can be found in the
.text section of the binary at virtual address 00BDC260, is 384 bytes (hex 180)
long, returns to the caller (R), and uses the EBP register (B) to reference its
local variables. Flags used to describe a function (such as R and B above) are
described in IDA’s built-in help file (or by right-clicking a function and
choosing Properties. The flags are shown as editable checkboxes in the
resulting Properties dialog).

As with other display windows, double-clicking an entry in the Functions
window causes the disassembly window to jump to the location of the selected
function.

The Output Window

The Output window at the bottom of the IDA workspace rounds out the
default set of windows that are visible when a new file is opened. The Ouput
window serves as IDA’s output console and is the place to look for information
on tasks IDA is performing. When a binary is first opened, for example,
messages are generated to indicate both what phase of analysis IDA is in at
any given time and what actions IDA is carrying out to create the new database.
As you work with a database, the Output window is used to output the status
of various operations that you perform. The contents of the Output window
can be copied to the system clipboard or cleared entirely by right-clicking
anywhere in the window and selecting the appropriate operation. The Output
window will often be the primary means by which you display output from
any scripts and plug-ins that you develop for IDA.

Secondary IDA Displays

Chapter 5

In addition to the disassembly, Functions, and Output windows, IDA opens a
number of other tabbed windows on your IDA desktop. These tabs are present
just under the navigation band (see ® in Figure 4-9). These windows are
used to provide alternate or specialized views into the database. The utility
of these displays depends on both the characteristics of the binary you are
analyzing and your skill with IDA. Several of these windows are sufficiently
specialized to require more detailed coverage in later chapters.

The Hex View Window

Hex View is something of a misnomer in this case, as the IDA Hex View win-
dow can be configured to display a variety of formats and doubles as a hex
editor. By default, the Hex View window provides a standard hex dump of
the program content with 16 bytes per line and ASCII equivalents displayed
alongside. As with the disassembly window, several hex views can be opened
simultaneously. The first Hex window is titled Hex View-A, the second Hex
View-B, the next Hex View-C, and so on. By default, the first Hex window is
synchronized with the first disassembly window. When a disassembly view

is synchronized with a hex view, scrolling in one window causes the other
window to scroll to the same location (same virtual address). In addition,
when an item is selected in disassembly view, the corresponding bytes are
highlighted in hex view. In Figure 5-5, the disassembly view cursor is posi-
tioned at address 0040108¢, a call instruction, causing the five bytes that make
up the instruction to be highlighted in the Hex window.

IDA View-A

® | text:00401088 mov ecx, [ebpt+argc]

® | text:0040108B push ecx

® | text:0040108C call sub_ 401030
£
D040104C 7C €1 40 OO0 E8 BE 07 O0 00 83 C4 08 83 F8 01 75 |-@.F+....-..°.n i’
D040105C 05 8B 45 FC EB OA E8 99 FF FF FF B8 64 00 00 00 ..End.F. 4d...
D040106C BB E5 5D €3 55 8B EC 83 EC 10 C7 45 F8 00 00 00 .s]+U.8.8.!E°...
D040107C 00 ©7 45 FC 00 00 OO O0 8B 45 OC 50 8B 4D 08 51 .}En.....E.P.M.Q
oo40108C — F2 p 6A 0O E8 D2 00 F. .-..E=3.F-.
Do40109C 00 00D 83 C4 04 83 C4 D4 EB 4F ...-.PFJ....-.FO
D02010AC 08 00 oo 99 pg Dataformat " 55 Fa6880CL}=.—..U(h.-
D04010BC 40 00 E8 69 o7 Columns " L0100 00D OD B85 @.Fi....—uleeo..
DD4D10CC D2 OF 84 91 00 Text ») 68 9C C1 40 00 —....... E=Ph.-@.
D04010DC EB 4B 07 00 00— B 51 68 C8 C1 40 FK....-..M°Qh+-@

004010EC 00 E8 21 07 oc kol Seveito file,

00001050 [00401090: maintzo

Figure 5-5: Synchronized hex and disassembly views

Also shown in Figure 5-5 is the hex display context menu, available
when you right-click anywhere within the hex display. This context menu is
where you may specify with which, if any, disassembly view you would like to
synchronize a particular hex display. Deselecting the synchronization option
allows a Hex window to be scrolled independently of any disassembly window.
Selecting the Edit menu option turns the Hex View into a hex editor. Once
you are finished editing, you must either commit or cancel your changes in
order to return to view mode. The Data Format menu item allows you to
select from a variety of display formats such as 1-, 2-, 4-, or 8-byte hexadeci-
mal; signed decimal; or unsigned decimal integers and various floating point
formats. The Columns menu option allows you to change the number of col-
umns used in the display, and the Text option allows you to turn the text
dump on and off.

IDA Data Displays 67

68

Chapter 5

In some cases you may find that the Hex window shows nothing but
question marks. This is IDA’s way of telling you that it has no idea what values
might occupy a given virtual address range. Such is the case when a program
contains a bss* section, which typically occupies no space within a file but is
expanded by the loader to accommodate the program’s static storage
requirements.

The Exports Window

The Exports window lists the entry points into a file. These include the pro-
gram’s execution entry point, as specified in its header section, along with
any functions and variables that the file exports for use by other files. Exported
functions are commonly found in shared libraries such as Windows DLL files.
Exported entries are listed by name, virtual address, and, if applicable, by
ordinal number.’ For executable files, the Exports window always contains at
least one entry: the program’s execution entry point. IDA names this entry
point start. A typical Exports window entry follows:

LoadLibraryA 7C801D77 578

As with many of the other IDA windows, double-clicking an entry in the
Exports window will jump the disassembly window to the address associated
with that entry. The Exports window offers functionality available in command-
line tools such as objdump (-T), readelf (-s), and dumpbin (/EXPORTS).

The Imports Window

The Imports window is a counterpart to the Exports window. It lists all func-
tions that are imported by the binary being analyzed. The Imports window is
relevant only when a binary makes use of shared libraries. Statically linked
binaries have no external dependencies and therefore no imports. Each entry
in the Imports window lists the name of an imported item (function or data)
and the name of the library that contains that item. Since the code for an
imported function resides in a shared library, the addresses listed with each
entry refer to the virtual address of the associated import table entry.® An
example of an Import window entry is shown here:

0040E108 GetModuleHandleA KERNEL32

4. A bss section is created by a compiler to house all of a program’s uninitialized, static variables.
Since no initial value is assigned to these variables, there is no need to allocate space for them
in the program’s file image, so the section’s size is noted in one of the program’s headers.
When the program is executed, the loader allocates the required space and initializes the entire
block to zero.

5. An export ordinal number may be used in a shared library to make a function accessible by
number rather than name. The use of ordinals can speed the address lookup process and allow
programmers to hide the names of their functions. Export ordinals are used in Windows DLLs.

6. An import table provides space for a loader to store addresses of imported functions once the
required libraries have been loaded and the addresses of those functions are known. A single
import table entry holds the address of one imported function.

Double-clicking this import would jump the disassembly window to
address 0o40E108. The contents of this memory location in hex view would
be 22 22 22 22. IDA is a static analysis tool, and it has no way to know what
address will be entered into this memory location when the program is exe-
cuted. The Imports window also offers functionality available in command-
line tools such as objdump (-T), readelf (-s), and dumpbin (/IMPORTS).

An important point to remember about the Imports window is that it
displays only the symbols that a binary wants handled automatically by the
dynamic loader. Symbols that a binary chooses to load on its own using a
mechanism such as dlopen/dlsym Or LoadLibrary/GetProcAddress will not be
listed in the Imports window.

The Structures Window

The Structures window is used to display the layout of any complex data struc-
tures, such as C structs or unions, that IDA determines are in use within a
binary. During the analysis phase, IDA consults its extensive library of function-
type signatures in an attempt to match function parameter types to memory
used within the program. The Structures window shown in Figure 5-6 indicates
that IDA believes the program uses the sockaddr’ data structure.

|
D00DODO0 : Ins/Del : create/delete structure -
0D0DODD0 ; DfAS* : create strocture member (data/ascii/array)
Qo0D0000D : N : rename structure or structure member

Qo0D000O0D : U : delete structure member

00000000 ; [ODOODO10 BYTES. COLLAPSED STRUCT sockaddr. PRESS EEYPAD

| [1. sockaddr:-ooo0 -
1| | 3

Figure 5-6: The Structures window

There are many possible reasons why IDA may have arrived at this con-
clusion. One such reason might be that IDA has observed a call to the C library
connect® function to establish a new network connection. Double-clicking the
name of a data structure (sockaddr in this case) causes IDA to expand the
structure, and this allows you to see the detailed layout of the structure,
including individual field names and sizes.

The two primary uses for the Structures window are (1) to provide a
ready reference for the layout of standard data structures and (2) to provide
you with a means to create your own data structures for use as memory layout
templates when you discover custom data structures within a program. Struc-
ture definition and the application of structures within disassemblies are cov-
ered in more detail in Chapter 8.

7. A sockaddr structure is a datatype in the C standard library often used to represent an
endpoint in a network connection. A sockaddr variable can be used to hold an IP address and
port number as part of the process of establishing a TCP connection to a remote computer.

8. int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

IDA Data Displays 69

70

The Enums Window

The Enums window is somewhat similar to the Structures window. When IDA
detects the use of a standard enumerated datatype (C enum), that datatype will
be listed in the Enums window. You can make your disassemblies far more
readable by using enums in place of integer constants. Like the Structures
window, the Enums window offers facilities for defining your own enumerated
types that you can use with your disassembled binaries.

Tertiary IDA Displays

Chapter 5

The last windows that we will discuss are those that IDA does not open by
default. Each of these windows is available via View » Open Subviews, but
they tend to provide information to which you may not require immediate
access and are thus initially kept out of the way.

The Strings Window

The Strings window is the built-in IDA equivalent of the strings utility and
then some. In IDA versions 5.1 and earlier, the Strings window was open as
part of the default desktop; however, with version 5.2, the Strings window
is no longer open by default, though it remains available via View » Open
Subviews » Strings.

The purpose of the Strings window is to display a list of strings extracted
from a binary along with the address at which each string resides. Like double-
clicking names in the Names window, double-clicking any string listed in the
Strings window causes the disassembly window to jump to the address of the
selected string. When used with cross-references (Chapter 9), the Strings
window provides the means to rapidly spot an interesting string and to track
back to any location in the program that references that string. For example,
you might see the string SOFTWARE\Microsoft\Windows\CurrentVersion\Run
listed and wonder why an application is referencing this particular key within
the Windows registry. As you will see in the following chapter, navigating to
the program location that references this string takes only four clicks. Under-
standing the operation of the Strings window is essential to using it effectively.
IDA does not permanently store the strings it extracts from a binary. There-
fore, every time the Strings window is opened, the entire database must be
scanned or rescanned for string content. String scanning is performed in
accordance with the settings of the Strings window, and you can access these
settings by right-clicking within the Strings window and selecting Setup. As
shown in Figure 5-7, the Setup Strings window is used to specify the types of
strings that IDA should scan for. The default string type that IDA scans for
is a C-style, null-terminated, 7-bit, ASCII string of at least five characters in
length.

List setup

[~ Display only defined strings

™ Ignore instructions/data definitions
[V Strict ASCII (7-bit) strings

—Allowed string types

¥ C (zero terminated)

[~ Pascal

[~ Pascal, 2 byte length

™ Unicode

[~ Pascal, 4byte length

[~ Pascal style Unicode, 2 byte length
[~ Pascal style Unicode, 4 byte length

Minimal string length: I 5
OK I Cancel | Help |

Figure 5-7: The Setup Strings window

If you expect to encounter anything other than C-style strings, you should
reconfigure the Setup Strings window to choose the appropriate string type
to search for. For example, Windows programs often make use of Unicode
strings, while Borland Delphi binaries use Pascal-style strings with a 2-byte
length. Every time you close the Setup Strings window by clicking OK, IDA
will rescan the database for strings in accordance with the new settings. Two
setup options deserve special mention:

Display only defined strings
This option restricts the Strings window to displaying only named string
data items that have been automatically created by IDA or manually cre-
ated by the user. With this option selected, all other options are disabled,
and IDA will not automatically scan for additional string content.

Ignore instructions/data definitions
This option causes IDA to scan for strings across instruction and existing
data definitions. Using this option allows IDA to (1) see strings that may
be embedded in the code portion of a binary and have been mistakenly
converted into instructions or (2) to see strings within data that may be
formatted as something other than a string (such as an array of bytes or
integers). This option will also lead to the generation of many junk strings,
which are sequences that happen to consist of five or more ASCII charac-
ters whether or not they are legible. The effect of using this option is
similar to using the strings command with the -a switch.

Figure 5-8 demonstrates that IDA does not necessarily show all strings
within a binary if the strings setup is not configured properly. In this case,
Ignore instructions/data definitions has not been selected.

IDA Data Displays 71

72

Chapter 5

.rdata:0040C180 aASimpleGues=in db 'A simple gunessing game!' ,0Ah,0 ; DATA HREF: _1“.1&'_:1—491’-3

.rdata:0040C199 align 4
*|. rdata:0040C19C dword 40C1%C dd 61656C50h, 67206573h, 73736575h, 6E206120h, 65626D75h
.rdata:0040C18C ; DATA X¥REF: _1“1&:11—5'."10
.rdata:0040C15C dd 65622072h, 65657774h, 2031206Eh, 20646E61h, 0A2E6425h
®* | rdata:oD40C1C4 dd 0
*|.rdata:0040C1CS ; char ab[]
.rdata:0040C1CE8 aD db '®d4',0 ; DATA XREF: 71?1&'.:1—'??1-3
®|. raata:op4ancice align 4

.rdata:0040C1CC aInvalidInputQu db 'Invalid input, ¢mitting!',0Ah,0

.rd
Stril ind
LY | Strings window

o [Address [Lenath [voe [Sting |
ol rd Ié .rdata:0040... 00000019 (o} A simple guessing game!\n
ol ~ I%’ .rdata:0040.. 000D001A C Invalid input, quitting!{n

- Tl [E7 .rdata:0040... ooooDDDZF (o} Congratulations, you got itin 3bd attempt{s)!in

Figure 5-8: Example of undetected string data

The result is that the string at location .rdata:0040C19C (“Please guess a num-
ber between 1 and %d.”) remains undetected. The moral here is to make
sure that you are looking for all of the types of strings you expect to
encounter in all of the places you might find them.

The Names Window

The Names window, shown in Figure 5-9, provides a summary listing of all
of the global names within a binary. A name is nothing more than a symbolic
description given to a program virtual address. IDA initially derives the list of
names from symbol-table and signature analysis during the initial loading of
a file. Names can be sorted alphabetically or in virtual address order (either
ascending or descending). The Names window is useful for rapidly navigating
to known locations within a program listing. Double-clicking any Names
window entry will immediately jump the disassembly view to display the
selected name.

£
L A
00401070
| 1el| _ amsg_exit 00401181
|| __crtCorExitProcess 004011A5
| __criexiterocess 004011CB
|\ EXE 004011DF
| _lockesit 004011E0
| _unlockesit 004011E9
| _initterm 004011F2
7 00401204
00401290
0040132F
00401300
00401379
004013FC

00401404 =
| »

Line 1 of 630

Figure 5-9: The Names window

Displayed names are both color and letter coded. The coding scheme is
summarized below:

F Aregular function. These are functions that IDA does not recog-
nize as library functions.

L Alibrary function. IDA recognizes library functions through the
use of signature-matching algorithms. If a signature does not exist
for a given library function, the function will be labeled as a regu-
lar function instead.

I Animported name, most commonly a function name imported
from a shared library. The difference between this and a library
function is that no code is present for an imported name, while
the body of a library function will be present in the disassembly.

C Named code. These are named program instruction locations
that IDA does not consider to be part of any function. This is pos-
sible when IDA finds a name in a program’s symbol table but
never sees a call to the corresponding program location.

W)

Data. Named data locations typically represent global variables.

A String data. This is a referenced data location containing a se-
guence of characters that conform to one of IDA’s known string
data types, such as a null-terminated ASCII C string.

As you browse through disassemblies, you will notice that there are many
named locations for which no name is listed in the Names window. In the
process of disassembling a program, IDA generates names for all locations
that are referenced directly either as code (a branch or call target) or as data
(read, written, or address taken). If a location is named in the program’s
symbol table, IDA adopts the name from the symbol table. If no symbol table
entry is available for a given program location, IDA generates a default name
for use in the disassembly. When IDA chooses to name a location, the virtual
address of the location is combined with a prefix that indicates what type of
location is being named. Incorporating the virtual address into a generated
name ensures that all generated names will be unique, as no two locations
can share the same virtual address. Autogenerated names of this type are not
displayed in the Names window. Some of the more common prefixes used
for autogenerated names include these:

sub_xxxxxx A subroutine at address xxxxxx
loc_xxxxxx An instruction location at address xxxxxx
byte_xxxxxx 8-bit data at location xxxxxx

word_xxxxxx 16-bit data at location xxxxxx
dword_xxxxxx 32-bit data at location xxxxxx

unk_xxxxxx Data of unknown size at location xxxxxx

IDA Data Displays /3

Throughout the course of the book we will show additional algorithms
that IDA applies in choosing names for program data locations.

The Segments Window

The Segments window displays a summary listing of the segments present in
the binary file. Note that what IDA terms segments are most often called sections
when discussing the structure of binary files. Do not confuse the use of the
term segments in this manner with the memory segments associated with CPUs
that implement a segmented memory architecture. Information presented
in the window includes the segment name, start and end addresses, and
permission flags. The start and end addresses represent the virtual address
range to which the program sections will be mapped at runtime. The following
listing is an example of Segments window content from a Windows binary:

Name
UPX0
UPX1
UPX2

UPX2

Start

End RWXDL Align Base Type C(Class ADes ss ds fs gs

00401000 00407000 R W X . L para 0001 public CODE 32 0000 0000 0001 FFFFFFFF FFFFFFFF
00407000 00408000 R W X . L para 0002 public CODE 32 0000 0000 0001 FFFFFFFF FFFFFFFF
00408000 0040803C R W . . L para 0003 public DATA 32 0000 0000 0001 FFFFFFFF FFFFFFFF
.idata 0040803C 00408050 R W . . L para 0003 public XTRN 32 0000 0000 0001 FFFFFFFF FFFFFFFF
00408050 00409000 R W . . L para 0003 public DATA 32 0000 0000 0001 FFFFFFFF FFFFFFFF

74

Chapter 5

In this case, we might quickly suspect that something is funny with this
particular binary since it uses nonstandard segment names and has two exe-
cutable segments that are writable, thus indicating the possibility of self-
modifying code (more on this in Chapter 21). The fact that IDA knows the
size of a segment does not indicate that IDA knows the contents of the seg-
ment. For a variety of reasons, segments often occupy less space on disk than
they do in memory. In such cases, IDA displays values for the portions of the
segment that IDA has determined it could fill from the disk file. For the
remainder of the segment, IDA displays question marks.

Double-clicking any entry in the window jumps the disassembly view to
the start of the selected segment. Right-clicking an entry provides a context
menu from which you can add new segments, delete existing segments, or
edit the properties of existing segments. These features are particularly useful
when reverse engineering files with nonstandard formats, as the binary’s
segment structure may not have been detected by the IDA loader.

Command-line counterparts to the Segments window include objdump (-h),
readelf (-S), and dumpbin (/HEADERS).

The Signatures Window

IDA makes use of an extensive library of signatures for identifying known
blocks of code. Signatures are used to identify common compiler-generated
startup sequences in an attempt to determine the compiler that may have
been used to build a given binary. Signatures are also used to categorize
functions as known library functions inserted by a compiler or as functions
added to the binary as a result of static linking. When IDA identifies library

functions for you, you can focus more of your effort on the code that IDA did
not recognize (which is probably far more interesting to you than reverse
engineering the inner workings of printf).

The Signatures window is used to list the signatures that IDA has already
matched against the open binary file. An example from a Windows PE file is
shown here:

File State #func Library name
vc32rtf Applied 501 Microsoft VisualC 2-8/net runtime

This example indicates that IDA has applied the vc32rtf signatures
(from <IDADIR>/sigs) against the binary and, in doing so, has been able to
recognize 501 functions as library functions. That’s 501 functions that you
will not need to reverse engineer!

In at least two cases, you will want to know how to apply additional sig-
natures against your binaries. In the first case, IDA may fail to recognize the
compiler that was used to build a binary, with a resulting inability to select
appropriate signatures to apply. In this case, you may wish to force IDA to
apply one or more signatures that your preliminary analysis has led you to
believe IDA should try. The second situation involves creating your own sig-
natures for libraries that may not have existing signatures included with IDA.
An example might be the creation of signatures for the static version of the
OpenSSL libraries that ship with FreeBSD 8.0. DataRescue makes a toolkit
available for generating custom signatures that can be used by IDA’s signa-
ture-matching engine. We’ll cover the generation of custom signatures in
Chapter 12. Regardless of why you want to apply new signatures, either press-
ing the INSERT key or right-clicking the Signatures window will offer you the
Apply new signature option, at which time you can choose from a list of all
signatures known to your installation of IDA.

The Type Libraries Window

Similar in concept to the Signatures window is the Type Libraries window. Type
libraries represent IDA’s accumulated knowledge of predefined datatypes
and function prototypes gleaned from header files included with most pop-
ular compilers. By processing header files, IDA understands the datatypes
that are expected by common library functions and can annotate your disas-
semblies accordingly. Similarly, from these header files IDA understands
both the size and layout of complex data structures. All of this type informa-
tion is collected into TIL files (<IDADIR>/til) and applied any time a binary
is analyzed. As with signatures, IDA must first be able to deduce the libraries
that a program uses before it can select an appropriate set of TIL files to
load. You can request that IDA load additional type libraries by pressing the
INSERT key or by right-clicking within the Type Libraries window and choosing
Load type library. Type libraries are covered in more detail in Chapter 13.

IDA Data Displays /5

76

Chapter 5

The Function Calls Window

In any program, a function can both call and be called by other functions. In
fact, it is a fairly simple task to construct a graph that displays the relation-
ships between callers and callees. Such a graph is called a function call graph
or function call tree (we will demonstrate how to have IDA generate such graphs
in Chapter 9). On occasion, we may not be interested in seeing the entire
call graph of a program; instead, we may be interested only in knowing the
immediate neighbors of a given function. For our purposes, we will call Y a
neighbor of X if Y directly calls X or X directly calls Y.

The Function Calls window provides the answer to this neighbor question.
When you open the Function Calls window, IDA determines the neighbors of
the function in which the cursor is positioned and generates a display such as
that shown in Figure 5-10.

|
e
Address I Caller I Instruction |
1| .text:004010BE _main call sub_40182C
2| .text:004010DC _main call sub_40182C
3| .text:00401108 _main call sub_40182C
4| .text:0040112F _main call sub_40182C
5| .text:00401148 _main call sub_40182C
6 | .text:00401157 _main call sub_40182C
Address I Called function

|1 [.text00401833 ccall _SEH_prolog4

12 |. call __errmo

|3 | text:00401856 call __invalid_parameter

|4 | text:00401863 call sub_4015EC

|5 | text:00401870 call _ lock_file2

|6 | text:0040187A call sub_4015EC

|7 | text:00401882 call __sthuf

|8 | text:00401832 call sub_4015EC

19| text:0040183A call __output_|

| 10 | .text:00401842 call sub_4015EC

| 11 | .text:004018AB call __ ftbuf

| 12 | .text:004018BA call loc_4018C8 ; Fin..

| 13 | .text:004018C2 call _ SEH_epiog4

| 14 | .text:004018C8 call sub_4015EC ;Fin...

| 15 | .text:00401803 call _ unlodk_file2

Figure 5-10: The Function Calls window

In this example, we see that the function named sub_40182C is called from
six different locations in _main and _main in turn makes 15 other function
calls. Double-clicking any line within the Function Calls window immediately
jumps the disassembly window to the selected calling or called function (or
caller and callee). IDA cross-references (xrefs) are the mechanisms that
underlie the generation of the Function Calls windows. Xrefs will be covered
in more detail in Chapter 9.

The Problems Window

The Problems window is IDA’s way of informing you of any difficulties that it
has encountered in disassembling a binary and how it has chosen to deal
with those difficulties. In some instances, you may be able to manipulate the
disassembly to help IDA overcome a problem, and in other instances you
may not. You can expect to encounter problems in even the simplest of

binaries. In many cases, simply choosing to ignore the problems is not a bad
strategy. In order to correct many of the problems, you need to have a better
understanding of the binary than IDA has, which for most of us is probably
not going to happen. A sample set of problems follows:

Address Type Instruction
.text:0040104C BOUNDS call eax
.text:004010B0 BOUNDS call eax
.text:00401108 BOUNDS call eax
.text:00401350 BOUNDS call dword ptr [eax]
.text:004012A0 DECISION push ebp
.text:004012D0 DECISION push ebp
.text:00401560 DECISION jmp ds:__set_app_type
.text:004015F8 DECISION dd OFFFFFFFFh
.text:004015FC DECISION dd o

Each problem is characterized by (1) the address at which the problem
occurs, (2) the type of problem encountered, and (3) the instruction present
at the problem location. In this example, we see a BOUNDS problem and a
DECISION problem. A BoUNDS problem occurs when the destination of a call
or jump either can’t be determined (as in this example, since the value of eax
is unknown to IDA) or appears to lie outside the range of virtual addresses in
a program. A DECISION problem is most often not a problem at all. A DECISION
usually represents an address at which IDA has chosen to disassemble bytes
as instructions rather than data even though the address has never been
referenced during the recursive descent instruction traversal (see Chapter 1).
A complete list of problem types and suggestions for how to deal with them is
available in the built-in IDA help file (see topic Problems List).

Summary

At first glance, the number of displays that IDA offers can seem overwhelm-
ing. You may find it easiest to stick with the primary displays until you are
comfortable enough to begin exploring the additional display offerings. In
any case, you should certainly not feel obligated to use everything that IDA
throws at you. Not every window will be useful in every reverse engineering
scenario.

In addition to the windows covered in this chapter, you will be confronted
by a tremendous number of dialogs as you endeavor to master IDA. We will
introduce key dialogs as they become relevant in the remainder of the book.
Finally, other than the default disassembly view graph, we have elected not to
cover graphs in this chapter. The IDA menu system distinguishes graphs as a
separate category of display from the subviews discussed in this chapter. We
will cover the reasons behind this in Chapter 9, which deals exclusively with
graphs.

At this point, you should be starting to get comfortable with the IDA user
interface. In the next chapter, we begin to focus on the many ways that you
can manipulate a disassembly to enhance your understanding of its behavior
and to generally make your life easier with IDA.

IDA Data Displays 77

DISASSEMBLY NAVIGATION

In this and the following chapter we cover
the heart of what puts the Interactive in
IDA Pro, which is, in a nutshell, ease of navi-

gation and ease of manipulation. The focus of
this chapter is navigation; specifically, we show how IDA

facilitates moving around a disassembly in a logical
manner. So far, we have shown that at a basic level IDA simply combines
the features of many common reverse engineering tools into an integrated
disassembly display. Navigating around the display is one of the essential
skills required in order to master IDA. Static disassembly listings offer no
inherent navigational capability other than scrolling up and down the listing.
Even with the best text editors, such dead listings are very difficult to navigate,
as the best they have to offer is generally nothing more than an integrated,
grep-style search. As you shall see, IDA’s database underpinnings provide for
exceptional navigational features.

80

Basic IDA Navigation

Chapter 6

In your initial experience with IDA, you may be happy to make use of nothing
more than the navigational features that IDA has to offer. In addition to
offering fairly standard search features that you are accustomed to from your
use of text editors or word processors, IDA develops and displays a comprehen-
sive list of cross-references that behave in a manner similar to hyperlinks on
a web page. The end result is that, in most cases, navigating to locations of
interest requires nothing more than a double-click.

Double-Click Navigation

When a program is disassembled, every location in the program is assigned
a virtual address. As a result, we can navigate anywhere within a program by
providing the virtual address of the location we are interested in visiting.
Unfortunately for us, maintaining a catalog of addresses in our head is not a
trivial task. This fact motivated early programmers to assign symbolic names
to program locations that they wished to reference, making things a whole
lot easier on themselves. The assignment of symbolic names to program
addresses was not unlike the assignment of mnemonic instruction names to
program opcodes; programs became easier to read and write by making them
easier to remember.

As we discussed previously, IDA generates symbolic names during the
analysis phase by examining a binary’s symbol table or by automatically gen-
erating a name based on how a location is referenced within the binary. In
addition to its symbolic purpose, any name displayed in the disassembly
window is a potential navigation target similar to a hyperlink on a web page.
The two differences between these names and standard hyperlinks are (1)
that the names are never highlighted in any way to indicate that they can be
followed and (2) that IDA requires a double-click to follow rather than the sin-
gle-click required by a hyperlink. We have already seen the use of names in
various subwindows such as the Functions, Imports, and Exports windows.
Recall that for each of these windows, double-clicking a name caused the dis-
assembly view to jump to the referenced location. This is one example of the
double-click navigation at work. In the following listing, each of the symbols
labeled @ represents a named navigational target. Double-clicking any of
them will cause IDA to relocate the display to the selected location.

.text:0040132B loc_40132B: ; CODE XREF: @sub_4012E4+B"j
.text:0040132B cmp edx, 0CDh

.text:00401331 jg short @loc_40134E

.text:00401333 jz ©®loc_4013BF

.text:00401339 sub edx, OAh

.text:0040133C jz short @loc_4013A7

.text:0040133E sub edx, 0Cih

.text:00401344 jz short @loc_4013AF

.text:00401346 dec edx

.text:00401347 jz short @loc_4013B7

.text:00401349 jmp ©®loc_4013DD ; default

.text:00401349 ; jumptable 00401300 case 0

Q000

.text:0040134E ; ------m-mmmmm e
.text:0040134E
.text:0040134E loc_40134E: ; CODE XREF: @®sub_4012E4+4D"j

For navigational purposes, IDA treats two additional display entities as nav-
igational targets. First, cross-references (shown at @ here) are treated as
navigational targets. Cross-references are generally formated as a name and a
hex offset. The cross-reference at the right of loc_40134E in the previous listing
refers to a location that is 4D, or 77, bytes beyond the start of sub_4012E4.
Double-clicking the cross-reference text will jump the display to the referen-
cing location (00401331 in this case). Cross-references are covered in more
detail in Chapter 9.

The second type of display entity afforded special treatment in a naviga-
tional sense is one that uses hexadecimal values. If a displayed hexadecimal
value represents a valid virtual address within the binary, then double-clicking
the value will reposition the disassembly window to display the selected virtual
address. In the listing that follows, double-clicking any of the values indicated
by © will jump the display, because each is a valid virtual address within the
given binary, while double-clicking any of the values indicated by @ will have
no effect.

.data:00409013 db 04
.data:00409014 dd ©4037Boh
.data:00409018 db (410]
.data:00409019 db @0Ah
.data:0040901A dd ©404590h
.data:0040901E db (4]0}
.data:0040901F db @0Ah
.data:00409020 dd ©404DA8h

A final note about double-click navigation concerns the IDA Output
window, which is most often used to display informational messages. When
a navigational target, as previously described, appears as the first item in a
message, double-clicking the message will jump the display to the indicated
target.

Propagating type information...

Function argument information has been propagated
The initial autoanalysis has been finished.
40134e is an interesting location

Testing: 40134e

loc_4013B7

Testing: loc_4013B7

In the Output window excerpt just shown, the two messages indicated
by © can be used to navigate to the addresses indicated at the start of the
respective messages. Double-clicking any of the other messages, including
those at @, will result in no action at all.

Disassembly Navigation 81

82

Chapter 6

Jump to Address

Occasionally, you will know exactly what address you would like to navigate to,
yet no name will be handy in the disassembly window to offer simple double-
click navigation. In such a case, you have a few options. The first, and most
primitive, option is to use the disassembly window scroll bar to scroll the
display up or down until the desired location comes into view. This is usually
feasible only when the location you are navigating to is known by its virtual
address, since the disassembly window is organized linearly by virtual address.
If all you know is a named location such as a subroutine named foobar, then
navigating via the scroll bar becomes something of a needle-in-a-haystack
search. At that point, you might choose to sort the Functions window alpha-
betically, scroll to the desired name, and double-click the name. A third option
is to use one of IDA’s search features available via the Search menu, which typ-
ically involves specifying some search criteria before asking IDA to perform a
search. In the case of searching for a known location, this is usually overkill.

Ultimately, the easiest way to get to a known disassembly location is to
make use of the Jump to Address dialog shown in Figure 6-1.

Jump address I LI
OK I Cancel | Help |

Figure 6-1: The Jump to Address dialog

The Jump to Address dialog is accessed via Jump » Jump to Address, or
by using the G hotkey while the disassembly window is active. Thinking of
this dialog as the Go dialog may help you remember the associated hotkey.
Navigating to any location in the binary is as simple as specifying the address
(a name or hex value will do) and clicking OK, which will immediately jump
the display to the desired location. Values entered into the dialog are remem-
bered and made available on subsequent use via a drop-down list. This history
feature makes returning to previously requested locations somewhat easier.

Navigation History

If we compare IDA’s document-navigation functions to those of a web browser,
we might equate names and addresses to hyperlinks, as each can be followed
relatively easily to view a new location. Another feature IDA shares with tradi-
tional web browsers is the concept of forward and backward navigation based
on the order in which you navigate the disassembly. Each time you navigate
to a new location within a disassembly, your current location is appended to
a history list. Two menu operations are available for traversing this list. First,
Jump » Jump to Previous Position repositions the disassembly to the most
recent entry in the history list. The behavior is conceptually identical to a
web browser’s back button. The associated hotkey is Esc, and it is one of the
most useful hotkeys that you can commit to memory. Be forewarned, how-
ever, that using esc when any window other than the disassembly window is

active causes the active window to be closed. (You can always reopen windows
that you closed accidentally via View » Open Subviews.) Backward navigation
is extremely handy when you have followed a chain of function calls several
levels deep and you decide that you want to navigate back to your original
position within the disassembly.

Jump » Jump to Next Position is the counterpart operation that moves
the disassembly window forward in the history list in a manner similar to a
web browser’s forward button. For the sake of completeness, the associated
hotkey for this operation is CTRL-ENTER, though it tends to be less useful than
using esc for backward navigation.

Finally, two of the more useful toolbar but-

tons, shown in Figure 6-2, provide the familiar Fle Edit Jump—Segrch Ve
browser-style forward and backward behavior. =] Eﬂ” Aalladl”
Each of the buttons is associated with a drop- M (WP |

down history list that offers you instant access
to any location in the navigation history without
having to trace your steps through the entire list.

Figure 6-2: Forward
and backward navi-
gation buttons

Stack Frames

Because IDA Pro is such a low-level analysis tool, many of its features and
displays expect the user to be somewhat familiar with the low-level details
of compiled languages, many of which center on the specifics of generating
machine language and managing the memory used by a high-level program.
Therefore, from time to time this book covers some of the theory of compiled
programs in order to make sense of the related IDA displays.

One such low-level concept is that of the stack frame. Stack frames are
blocks of memory allocated within a program’s runtime stack and dedicated
to a specific invocation of a function. Programmers typically group executable
statements into units called functions (also called procedures, subroutines, or
methods). In some cases this may be a requirement of the language being used.
In most cases it is considered good programming practice to build programs
from such functional units.

When a function is not executing, it typically requires little to no memory.
When a function is called, however, it may require memory for several reasons.
First, the caller of a function may wish to pass information into the function
in the form of parameters (arguments), and these parameters need to be
stored somewhere the function can find them. Second, the function may
need temporary storage space while performing its task. This temporary
space is often allocated by a programmer through the declaration of local
variables, which can be used within the function but cannot be accessed
once the function has completed.

Compilers utilize stack frames (also called activation records) to make the
allocation and deallocation of function parameters and local variables trans-
parent to the programmer. A compiler inserts code to place a function’s
parameters into the stack frame prior to transferring control to the function
itself, at which point the compiler inserts code to allocate enough memory to

Disassembly Navigation 83

84

Chapter 6

hold the function’s local variables. As a consequence of the way stack frames
are constructed, the address to which the function should return is also
stored within the new stack frame. A pleasant result of the use of stack
frames is that recursion becomes possible, as each recursive call to a function
is given its own stack frame, neatly segregating each call from its predecessor.
The following steps detail the operations that take place when a function is
called:

1. The caller places any parameters required by the function being called
into locations as dictated by the calling convention (see “Calling Con-
ventions” on page 85) employed by the called function. This operation
may result in a change to the program stack pointer if parameters are
placed on the runtime stack.

2. The caller transfers control to the function being called. This is usually
performed with an instruction such as the x86 CALL or the MIPS JAL. A
return address is typically saved onto the program stack or in a CPU
register.

3. If necessary, the called function takes steps to configure a frame pointer?
and saves any register values that the caller expects to remain unchanged.

4. The called function allocates space for any local variables that it may
require. This is often done by adjusting the program stack pointer to
reserve space on the runtime stack.

5. The called function performs its operations, potentially generating a
result. In the course of performing its operations, the called function
may access the parameters passed to it by the calling function. If the func-
tion returns a result, the result is often placed into a specific register or
registers that the caller can examine once the function returns.

6. Once the function has completed its operations, any stack space reserved
for local variables is released. This is often done by reversing the actions
performed in step 4.

7. Any registers whose values were saved (in step 3) on behalf of the caller
are restored to their original values. This includes the restoration of the
caller’s frame pointer register.

8. The called function returns control to the caller. Typical instructions for
this include the x86 RET and the MIPS 1R instructions. Depending on the
calling convention in use, this operation may also serve to clear one or
more parameters from the program stack.

9. Once the caller regains control, it may need to remove parameters from

the program stack. In such cases a stack adjustment may be required to
restore the program stack pointer to the value that it held prior to step 1.

1. A frame pointer is a register that points to a location inside a stack frame. Variables within the
stack frame are typically referenced by their relative distance from the location to which the frame
pointer points.

Steps 3 and 4 are so commonly performed upon entry to a function that
together they are called the function’s prologue. Similarly, steps 6 through 8
are so frequently performed at the end of a function that together they make
up the function’s epilogue. With the exception of step 5, which represents the
body of the function, all of these operations constitute the overhead associated
with calling a function.

Calling Conventions

With a basic understanding of what stack frames are, we can take a closer
look at exactly how they are structured. The examples that follow reference
the x86 architecture and the behavior associated with common x86 compilers
such as Microsoft Visual C/C++ or GNU’s gcc/g++. One of the most important
steps in the creation of a stack frame involves the placement of function
parameters onto the stack by the calling function. The calling function must
store parameters exactly as the function being called expects to find them;
otherwise, serious problems can arise. Functions advertise the manner in
which they expect to receive their arguments by selecting and adhering to a
specific calling convention.

A calling convention dictates exactly where a caller should place any
parameters that a function requires. Calling conventions may require param-
eters to be placed in specific registers, on the program stack, or in both reg-
isters and on the stack. Equally important to when parameters are passed
on the program stack is determining who is responsible for removing them
from the stack once the called function has completed. Some calling con-
ventions dictate that the caller is responsible for removing parameters that it
placed on the stack, while other calling conventions dictate that the called
function will take care of removing the parameters from the stack. Adherence
to publicized calling conventions is essential in maintaining the integrity of
the program stack pointer.

The C Calling Convention

The default calling convention used by most C compilers for the x86 arch-
itecture is called the C calling convention. The _cdecl modifier may be used by
C/C++ programs to force compilers to utilize the C calling convention when
the default calling convention may have been overridden. We will refer to
this calling convention as the cdecl calling convention from here on. The
cdecl calling convention specifies that the caller place parameters to a function
on the stack in right-to-left order and that the caller (as opposed to the callee)
remove the parameters from the stack after the called function completes.

One result of placing parameters on the stack in right-to-left order is that
the leftmost (first) parameter of the function will always be on the top of the
stack when the function is called. This makes the first parameter easy to find
regardless of the number of parameters the function expects, and it makes
the cdecl calling convention ideally suited for use with functions that can take
a variable number of arguments (such as printf).

Disassembly Navigation 85

86

Chapter 6

Requiring the calling function to remove parameters from the stack
means that you will often see instructions that make an adjustment to the
program stack pointer immediately following the return from a called func-
tion. In the case of functions that can accept a variable number of arguments,
the caller is ideally suited to make this adjustment, as the caller knows exactly
how many arguments it has chosen to pass to the function and can easily make
the correct adjustment, whereas the called function never knows ahead of
time how many parameters it may receive and would have a difficult time
making the necessary stack adjustment.

In the following examples we consider calls to a function having the fol-
lowing prototype:

void demo_cdecl(int w, int x, int y, int z);

By default, this function will use the cdecl calling convention, expecting
the four parameters to be pushed in right-to-left order and requiring the
caller to clean the parameters off the stack. A compiler might generate code
for a call to this function as follows:

; demo_cdecl(1, 2, 3, 4); //programmer calls demo_cdecl
push 4 ; push parameter z

push 3 ; push parameter y
push 2 ; push parameter x
push 1 ; push parameter w
call demo_cdecl ; call the function
add esp, 16 ; adjust esp to its former value

The four push operations beginning at @ result in a net change to the
program stack pointer (ESP) of 16 bytes (4 * sizeof(int) on a 32-bit arch-
itecture), which is undone at @ following the return from demo_cdecl. If
demo_cdecl is called 50 times, each call will be followed by an adjustment
similar to that at ®. The following example also adheres to the cdecl calling
convention while eliminating the need for the caller to explicitly clean
parameters off the stack following each call to demo_cdecl.

; demo_cdecl(1, 2, 3, 4); //programmer calls demo_cdecl
mov [esp+12], 4 ; move parameter z to fourth position on stack

mov [esp+8], 3 ; move parameter y to third position on stack
mov [esp+4], 2 ; move parameter x to second position on stack
mov [esp], 1 ; move parameter w to top of stack

call demo_cdecl ; call the function

In this example, the compiler has preallocated storage space for the
parameters to demo_cdecl at the top of the stack during the function prologue.
When the parameters for demo_cdecl are placed on the stack, there is no change
to the program stack pointer, which eliminates the need to adjust the stack
pointer when the call to demo_cdecl completes. The GNU compilers (gcc and
g++) utilize this technique to place function parameters onto the stack.

Note that either method results in the stack pointer pointing to the leftmost
argument when the function is called.

The Standard Calling Convention

Standard in this case is a bit of a misnomer as it is a name that Microsoft created
for its own calling convention marked by the use of the _stdcall modifier in a
function declaration, as shown here:

void _stdcall demo_stdcall(int w, int x, int y);

In order to avoid any confusion surrounding the word standard, we will
refer to this calling convention as the stdcall calling convention for the
remainder of the book.

As with the cdecl calling convention, stdcall requires that function param-
eters be placed on the program stack in right-to-left order. The difference
when using stdcall is that the called function is responsible for clearing the
function parameters from the stack when the function has finished. In order
for a function to do this, the function must know exactly how many parameters
are on the stack. This is possible only for functions that accept a fixed number
of parameters. As a result, variable argument functions such as printf cannot
make use of the stdcall calling convention. The demo_stdcall function, for
example, expects three integer parameters, occupying a total of 12 bytes on
the stack (3 * sizeof(int) on a 32-bit architecture). An x86 compiler can use
a special form of the RET instruction to simultaneously pop the return address
from the top of the stack and add 12 to the stack pointer to clear the function
parameters. In the case of demo_stdcall, we might see the following instruction
used to return to the caller:

ret 12 ; return and clear 12 bytes from the stack

The primary advantage to the use of stdcall is the elimination of code to
clean parameters off the stack following every function call, which results in
slightly smaller, slightly faster programs. By convention Microsoft utilizes the
stdcall convention for all fixed-argument functions exported from shared
library (DLL) files. This is an important point to remember if you are attempt-
ing to generate function prototypes or binary-compatible replacements for
any shared library components.

The fastcall Convention for x86

A variation on the stdcall convention, the fastcall calling convention passes
up to two parameters in CPU registers rather than on the program stack. The
Microsoft Visual C/C++ and GNU gcc/g++ (version 3.4 and later) compilers
recognize the fastcall modifier in function declarations. When fastcall is
specified, the first two parameters passed to a function will be placed in the
ECX and EDX registers, respectively. Any remaining parameters are placed
on the stack in right-to-left order similar to stdcall. Also similar to stdcall,

Disassembly Navigation 87

88

Chapter 6

fastcall functions are responsible for removing parameters from the stack
when they return to their caller. The following declaration demonstrates the
use of the fastcall modifier.

void fastcall demo_fastcall(int w, int x, int y, int z);

A compiler might generate the following code in order to call
demo_fastcall

; demo_fastcall(1, 2, 3, 4); //programmer calls demo_fastcall

push 4 ; move parameter z to second position on stack
push 3 ; move parameter y to top position on stack
mov edx, 2 ; move parameter x to edx

mov ecx, 1 ; move parameter w to ecx

call demo_fastcall ; call the function

Note that no stack adjustment is required upon return from the call to
demo_fastcall, as demo_fastcall is responsible for clearing parameters y and z
from the stack as it returns to the caller. It is important to understand that
because two arguments are passed in registers, the called function needs to
clear only 8 bytes from the stack even though there are four arguments to the
function.

C++ Calling Conventions

Nonstatic member functions in C++ classes differ from standard functions in
that they must make available the this pointer, which points to the object used
to invoke the function. The address of the object used to invoke the function
must be supplied by the caller and is therefore provided as a parameter when
calling nonstatic member functions. The C++ language standard does not
specify how this should be passed to nonstatic member functions, so it should
come as no surprise that different compilers use different techniques when
passing this.

Microsoft Visual C++ offers the thiscall calling convention, which passes
this in the ECX register and requires the nonstatic member function to
clean parameters off the stack as in stdcall. The GNU g++ compiler treats
this as the implied first parameter to any nonstatic member function and
behaves in all other respects as if the cdecl convention is being used. Thus,
for g++-compiled code, this is placed on top of the stack prior to calling the
nonstatic member function, and the caller is responsible for removing param-
eters (there will always be at least one) from the stack once the function
returns. Additional features of compiled C++ are discussed in Chapter 8.

Other Calling Conventions

Complete coverage of every existing calling convention would require a
book in its own right. Calling conventions are often language-, compiler-,
and CPU-specific, and some research on your part may be required as you
encounter code generated by less-common compilers. A few situations
deserve special mention, however: optimized code, custom assembly lan-
guage code, and system calls.

When functions are exported for use by other programmers (such as
library functions), it is important that they adhere to well-known calling
conventions so that programmers can easily interface to those functions.
On the other hand, if a function is intended for internal program use only,
then the calling convention used by that function need be known only within
that function’s program. In such cases, optimizing compilers may choose to
use alternate calling conventions in order to generate faster code. Instances
in which this may occur include the use of the /GL option with Microsoft Visual
C++ and the use of the regparm keyword with GNU gcc/g++.

When programmers go to the trouble of using assembly language, they
gain complete control over how parameters will be passed to any functions
that they happen to create. Unless they wish to make their functions available
to other programmers, assembly language programmers are free to pass
parameters in any way they see fit. As a result, you may need to take extra
care when analyzing custom assembly code. Custom assembly code is often
encountered in obfuscation routines and shellcode.

A system call is a special type of function call used to request an operating
system service. System calls usually effect a state transition from user mode to
kernel mode in order for the operating system kernel to service the user’s
request. The manner in which system calls are initiated varies across operat-
ing systems and CPUs. For example, Linux x86 system calls may be initiated
using the int ox80 instruction or the sysenter instruction, while other x86
operating systems may use only the sysenter instruction or alternate interrupt
numbers. On many x86 systems (Linux being an exception) parameters for
system calls are placed on the runtime stack, and a system call number is
placed in the EAX register immediately prior to initiating the system call.
Linux system calls accept their parameters in specific registers and occasion-
ally in memory when there are more parameters than available registers.

Local Variable Layout

Unlike the calling conventions that dictate the manner in which parameters
are passed into a function, there are no conventions that mandate the layout
of a function’s local variables. When compiling a function, one task a com-
piler is faced with is to compute the amount of space required by a function’s
local variables. Another task is to determine whether those variables can be
allocated in CPU registers or whether they must be allocated on the program
stack. The exact manner in which these allocations are made is irrelevant to
both the caller of a function and to any functions that may, in turn, be called.
Most notably, it is typically impossible to determine a function’s local variable
layout based on examination of the function’s source code.

Stack Frame Examples

Consider the following function compiled on a 32-bit x86-based computer:

void bar(int j, int k); // a function to call
void demo_stackframe(int a, int b, int c) {
int x;

Disassembly Navigation 89

90

Chapter 6

e

char buffer[64];

int y;

int z;

// body of function not terribly relevant other than
bar(z, y);

We compute the minimum amount of stack space required for local
variables as 76 bytes (three 4-byte integers and a 64-byte buffer). This function
could use either stdcall or cdecl, and the stack frame will look the same.
Figure 6-3 shows one possible implementation of a stack frame for an invoca-
tion of demo_stackframe, assuming that no frame pointer register is used (thus
the stack pointer, ESP, serves as the frame pointer). This frame would be set
up on entry to demo_stackframe with the one-line prologue:

sub esp, 76 ; allocate sufficient space for all local variables

The Offset column indicates the base+displacement address required to
reference any of the local variables or parameters in the stack frame.

Variable Offset
esp — z [esp]
y [esp+4]
local variables
buffer [esp+8]
X [esp+72]
saved eip [esp+76]
a [esp+80]
b [esp+84] parameters
C [esp+88]

Figure 6-3: An ESP-based stack frame

Generating functions that utilize the stack pointer to compute all variable
references requires a little more effort on the part of the compiler, as the
stack pointer changes frequently and the compiler must make sure that proper
offsets are used at all times when referencing any variables within the stack
frame. Consider the call made to bar in function demo_stackframe, the code
for which is shown here:

push dword [esp+4] ; pushy
push dword [esp+4] ; push z
call bar

add esp, 8 ; cdecl requires caller to clear parameters

200

The push at @ correctly pushes local variable y per the offset in Figure 6-3.
At first glance it might appear that the push at @ incorrectly references local
variable y a second time. However, because we are dealing with an ESP-based
frame and the push at @ modifies ESP, all of the offsets in Figure 6-3 must be
temporarily adjusted each time ESP changes. Following @, the new offset for
local variable z becomes [esp+4] as correctly referenced in the push at ®. When
examining functions that reference stack frame variables using the stack
pointer, you must be careful to note any changes to the stack pointer and
adjust all future variable offsets accordingly. One advantage of using the
stack pointer to reference all stack frame variables is that all other registers
remain available for other purposes.

Once demo_stackframe has completed, it needs to return to the caller.
Ultimately a ret instruction will be used to pop the desired return address
off the top of the stack into the instruction pointer register (EIP in this case).
Before the return address can be popped, the local variables need to be
removed from the top of the stack so that the stack pointer correctly points
to the saved return address when the ret instruction is executed. For this
particular function the resulting epilogue becomes

add esp, 76 ; adjust esp to point to the saved return address
ret ; return to the caller

At the expense of dedicating a register for use as a frame pointer and
some code to configure the frame pointer on entry to the function, the job
of computing local variable offsets can be made easier. In x86 programs, the
EBP (extended base pointer) register is typically dedicated for use as a stack frame
pointer. By default, most compilers generate code to use a frame pointer,
though options typically exist for specifying that the stack pointer should be
used instead. GNU gcc/g++, for example, offers the -fomit-frame-pointer
compiler option, which generates functions that do not rely on a fixed-frame
pointer register.

In order to see what the stack frame for demo_stackframe will look like using
a dedicated frame pointer, we need to consider this new prologue code:

push ebp ; save the caller's ebp value
mov ebp, esp ; make ebp point to the saved register value
sub esp, 76 ; allocate space for local variables

The push instruction at © saves the value of EBP currently being used by
the caller. Functions that adhere to the System V Application Binary Inter-
face for Intel 32-bit Processors? are allowed to modify the EAX, ECX, and
EDX registers but are required to preserve the caller’s values for all other
registers. Therefore, if we wish to use EBP as a frame pointer, we must save
the current value of EBP before we change it, and we must restore the value
of EBP before we return to the caller. If any other registers need to be saved
on behalf of the caller (ESI or EDI, for example), compilers may choose to
save them at the same time EBP is saved, or they may defer saving them until

2. See http://www.sco.com/developers/devspecs/abi386-4.pdf.

Disassembly Navigation 91

92

Chapter 6

local variables have been allocated. Thus, there is no standard location
within a stack frame for the storage of saved registers.

Once EBP has been saved, it can be changed to point to the current stack
location. This is accomplished by the mov instruction at @, which copies the
current value of the stack pointer into EBP. Finally, as in the non-EBP-based
stack frame, space for local variables is allocated at ©. The resulting stack
frame layout is shown in Figure 6-4.

Variable Offset
esp — z [ebp-76]
y [ebp-72]
local variables
buffer [ebp-68]
X [ebp-4]
ebp —= | saved ebp [ebp] } saved register(s)
saved eip [ebp+4]
a [ebp+8]
b [ebp+12] parameters
c [ebp+16]

Figure 6-4: An EBP-based stack frame

With a dedicated frame pointer, all variable offsets are computed relative
to the frame pointer register. It is most often (though not necessarily) the
case that positive offsets are used to access function parameters, while nega-
tive offsets are required to access local variables. With a dedicated frame
pointer in use, the stack pointer may be freely changed without affecting the
offset to any variables within the frame. The call to function bar can now be
implemented as follows:

push dword [ebp-72] ; push y

push dword [ebp-76] ; push z

call bar

add esp, 8 ; cdecl requires caller to clear parameters

The fact that the stack pointer has changed following the push at ® has
no effect on the access to local variable z in the succeeding push.

Finally, the use of a frame pointer necessitates a slightly different epilogue
once the function completes, as the caller’s frame pointer must be restored
prior to returning. Local variables must be cleared from the stack before the
old value of the frame pointer can be retrieved, but this is made easy by the

fact that the current frame pointer points to the old frame pointer. In x86
programs utilizing EBP as a frame pointer, the following code represents a
typical epilogue:

mov esp, ebp ; clears local variables by reseting esp
pop ebp ; restore the caller's value of ebp
ret 5 pop return address to return to the caller

This operation is so common that the x86 architecture offers the leave
instruction as an abbreviated means of accomplishing the same task.

leave ; copies ebp to esp AND then pops into ebp
ret ; pop return address to return to the caller

While the names of registers and instructions used will certainly differ
for other processor architectures, the basic process of building stack frames
will remain the same. Regardless of the architecture, you will want to familiar-
ize yourself with typical prologue and epilogue sequences so that you can
quickly move on to analyzing more interesting code within functions.

IDA Stack Views

Stack frames are clearly a runtime concept; a stack frame can’t exist without
a stack and without a running program. While this is true, it doesn’t mean
that you should ignore the concept of a stack frame when you are performing
static analysis with tools such as IDA. All of the code required to set up stack
frames for each function is present within a binary. Through careful analysis
of this code, we can gain a detailed understanding of the structure of any
function’s stack frame even when the function is not running. In fact, some
of IDA’s most sophisticated analysis is performed specifically to determine
the layout of stack frames for every function that IDA disassembles. During ini-
tial analysis, IDA goes to great lengths to monitor the behavior of the the
stack pointer over the course of a function by making note of every push or
pop operation along with any arithmetic operations that may change the stack
pointer, such as adding or subtracting constant values. The first goal of this
analysis is to determine the exact size of the local variable area allocated to
a function’s stack frame. Additional goals include determining whether a
dedicated frame pointer is in use in a given function (by recognizing a push
ebp/mov ebp, esp sequence, for example) and recognizing all memory ref-
erences to variables within a function’s stack frame. For example, if IDA noted
the following instruction in the body of demo_stackframe

mov eax, [ebp+8]

Disassembly Navigation 93

94

Chapter 6

it would understand that the first argument to the function (a in this case)
is being loaded into the EAX register (refer to Figure 6-4). Through careful
analysis of the stack frame structure, IDA can distinguish between memory
references that access function arguments (those that lie below the saved
return address) and references that access local variables (those that lie above
the saved return address). IDA takes the additional step of determining
which memory locations within a stack frame are directly referenced. For
example, while the stack frame in Figure 6-4 is 96 bytes in size, there are
only seven variables that we are likely to see referenced (four locals and three
parameters).

Understanding the behavior of a function often comes down to under-
standing the types of data that the function manipulates. When reading
a disassembly listing, one of the first opportunities that you will have to
understand the data a function manipulates is to view the breakdown of
the function’s stack frame. IDA offers two views into any function’s stack
frame: a summary view and a detail view. In order to understand these two
views, we will refer to the following version of demo_stackframe, which we
have compiled using gcc.

void demo_stackframe(int a, int b, int c) {
int x = ¢;
char buffer[64];
int y = b;
int z = 10;
buffer[o] = 'A';
bar(z, y);

In this example, local variables x and y are initialized from parameters c
and b, respectively. Local variable z is initialized with the constant value 10,
and the first character in the 64-byte local array, named buffer, is initialized
to the letter 'A'. The corresponding IDA disassembly of this function
appears here.

.text:00401090 ; ========= S UB R OU T I N E ===========================
.text:00401090

.text:00401090 ; Attributes: @bp-based frame

.text:00401090

.text:00401090 demo_stackframe proc near ; CODE XREF: sub_4010C1+41p
.text:00401090
.text:00401090 var_60 = dword ptr -60h

.text:00401090 var_5C
.text:00401090 var 58
.text:00401090 var_C
.text:00401090 arg 4

dword ptr -5Ch
byte ptr -58h
dword ptr -0Ch
dword ptr o0Ch

.text:00401090 arg 8 = dword ptr 10h
.text:00401090

.text:00401090 push ebp
.text:00401091 mov ebp, esp
.text:00401093 sub esp, ®78h
.text:00401096 mov eax, [ebp+®arg 8]

NOTE

.text:00401099 @mov [ebp+var_C], eax

.text:0040109C @mov eax, [ebp+arg 4]
.text:0040109F @mov [ebp+var 5C], eax
.text:004010A2 Bmov [ebp+var_60], 0Ah
.text:004010A9 ©mov [ebp+var_58], 41h
.text:004010AD mov eax, [ebp+var 5C]
.text:004010B0 ©mov [esp+4], eax
.text:004010B4 mov eax, [ebp+var 60]
.text:004010B7 ©mov [esp], eax
.text:004010BA call bar
.text:004010BF leave

.text:004010C0 retn

.text:004010C0 demo_stackframe endp

There are many points to cover in this listing as we begin to acquaint
ourselves with IDA’s disassembly notation. We begin at @ by noting that IDA
believes this function uses the EBP register as a frame pointer based on analysis
of the function prologue. At ® we learn that gcc has allocated 120 bytes (78h
equates to 120) of local variable space in the stack frame. This includes 8 bytes
for passing the two parameters to bar at @, but it is still far greater than the
76 bytes we had estimated previously and demonstrates that compilers occa-
sionally pad the local variable space with extra bytes in order to ensure a
particular alignment within the stack frame. Beginning at @, IDA provides a
summary stack view that lists every variable that is directly referenced within
the stack frame, along with the variable’s size and offset distance from the
frame pointer.

IDA assigns names to variables based on their location relative to the
saved return address. Local variables lie above the saved return address,
while function parameters lie below the saved return address. Local variable
names are derived using the var_ prefix joined with a hexadecimal suffix
that indicates the distance, in bytes, that the variable lies above the saved
frame pointer. Local variable var_c, in this case, is a 4-byte (dword) variable
that lies 12 bytes above the saved frame pointer ([ebp-och]). Function param-
eter names are generated using the arg_ prefix combined with a hexadecimal
suffix that represents the relative distance from the topmost parameter.
Thus the topmost 4-byte parameter would be named arg_o, while successive
parameters would be named arg_4, arg_8, arg_C, and so on. In this particular
example arg o is not listed because the function makes no use of parameter a.
Because IDA fails to locate any memory reference to [ebp+8] (the location of
the first parameter), arg o is not listed in the summary stack view. A quick
scan of the summary stack view reveals that there are many stack locations
that IDA has failed to name because no direct references to those locations
exist in the program code.

The only stack variables that IDA will automatically generate names for are those that
are directly referenced within a function.

An important difference between IDA’s disassembly listing and the
stack frame analysis that we performed earlier is the fact that nowhere in the
disassembly listing do we see memory references similar to [ebp-12]. Instead,

Disassembly Navigation 95

96

Chapter 6

IDA has replaced all constant offsets with symbolic names corresponding to
the symbols in the stack view and their relative offsets from the stack frame
pointer. This is in keeping with IDA’s goal of generating a higher-level dis-
assembly. It is simply easier to deal with symbolic names than numeric con-
stants. In fact, as we will see later, IDA allows us to change the names of any
stack variable to whatever we wish, making the names that much easier for us
to remember. The summary stack view serves as a map from IDA-generated
names to their corresponding stack frame offsets. For example, where the
memory reference [ebp+arg_8] appears in the disassembly, [ebp+10h] Or [ebp+16]
could be used instead. If you prefer numeric offsets, IDA will happily show
them to you. Right-clicking arg_8 at @ yields the context-sensitive menu
shown in Figure 6-5, which contains several options to change the display
format.

mov eax, [ebptarg 8]
mov [ebptvar_C], ea @y ¥refs from
2:3 T:ﬁéﬂ{:ﬁpgaﬂ?—: ES] Use standard symbolic constant
mov [ebp+var &0], O E‘ [ebp+10h]
mov [ebp+var 58],
mov eax, [eb}ghfa.r_.ﬁ E [ebp+16] H
mov [esp+4], eax [ebp+200]
mov eax, [ebp+var & E‘ [ebp+10000k] B
::Il éz:p] oo M Manual... Alt4F1
leave f Edit function... Alt+P
retn = Hide -
endp Graph view

¥ Undefine u
IFSUBROUTTIDNE= Synchronize with v H

Figure 6-5: Selecting an alternate display format

In this example, since we have source code available for comparison,
we can map the IDA-generated variable names back to the names used in
the original source using a variety of clues available in the disassembly.

1. First, demo_stackframe takes three parameters: a, b, and c. These correspond
to variables arg o, arg_4, and arg_8 respectively (though arg_o is missing in
the disassembly because it is never referenced).

2. Local variable x is initialized from parameter c. Thus var_C corresponds
to x since it is initialized from arg_8 at @.

3. Similarly, local variable y is initialized from parameter b. Thus, var_sC
corresponds to y since it is initialized from arg 4 at @.

4. Local variable z corresponds to var_6o since it is initialized with the
value 10 at ©.

5. The 64-byte character array buffer begins at var_58 since buffer[o] is
initialized with A (ASCII 0x41) at ©.

6. The two arguments for the call to bar are moved into the stack at ® rather
than being pushed onto the stack. This is typical of current versions of
gce (versions 3.4 and later). IDA recognizes this convention and elects
not to create local variable references for the two items at the top of the
stack frame.

In addition to the summary stack view, IDA offers a detailed stack frame
view in which every byte allocated to a stack frame is accounted for. The
detailed view is accessed by double-clicking any variable name associated with
a given stack frame. Double-clicking var_c in the previous listing would bring
up the stack frame view shown in Figure 6-6 (ESc closes the window).

Stack of sub_401070]

-0000000C var C
—-00000008

—-00000007
—00000006
—-00000005
—00000004
—-00000003
—00000002
—-00000001
+00000000
+00000004
+00000008
+0000000%
+0000000A
+0000000B
+0000000C arg 4
+00000010 arg 8

| [se++o0000004 -
1] | »

]
=
; ondefined

; ondefined

; nndefined

; ondefined

; ondefined

; ondefined

; ondefined

; ondefined

dup (?)

dup (?)

; nndefined

; ondefined

; ondefined

; ondefined

EREBEEEEEEEEEEEEER

Figure 6-6: IDA stack frame view

Because the detailed view accounts for every byte in the stack frame, it
occupies significantly more space than the summary view, which lists only
referenced variables. The portion of the stack frame shown in Figure 6-6
spans a total of 32 bytes, which represents only a small portion of the entire
stack frame. Note that no names are assigned to bytes that are not referenced
directly within the function. For example, parameter a, corresponding to
arg_o, was never referenced within demo_stackframe. With no memory reference
to analyze, IDA opts to do nothing with the corresponding bytes in the stack
frame, which occupy offsets +00000008 through +o0000000B. On the other hand,
arg_4 was directly referenced at @ in the disassembly listing, where its contents
were loaded into the 32-bit EAX register. Based on the fact that 32 bits of
data were moved, IDA is able to infer that the arg_4 is a 4-byte quantity and
labels it as such (db defines 1 byte of storage; dw defines 2 bytes of storage, also
called a word; and dd defines 4 bytes of storage, also called a double word).

Disassembly Navigation 97

98

Two special values shown in Figure 6-6 are “ s” and “ r” (each starts with
a leading space). These pseudo variables are IDA’s special representation of
the saved return address (“) and the saved register value(s) (* s” represent-
ing only EBP in this example). These values are included in the stack frame
view for completeness, as every byte in the stack frame is accounted for.

Stack frame view offers a detailed look at the inner workings of compilers.
In Figure 6-6 it is clear that the compiler has inserted 8 extra bytes between
the saved frame pointer “ s” and the local variable x (var_C). These bytes
occupy offsets -0o000001 through -oooo00008 in the stack frame. Further, a lit-
tle math performed on the offset associated with each variable listed in the
summary view reveals that the compiler has allocated 76 (rather than 64 per
the source code) bytes to the character buffer at var_58. Unless you happen
to be a compiler writer yourself or are willing to dig deep into the source
code for gcc, all you can do is speculate as to why these extra bytes are allo-
cated in this manner. In most cases we can chalk up the extra bytes to padding
for alignment, and usually the presence of these extra bytes has no impact on
a program’s behavior. After all, if a programmer asks for 64 bytes and is given
76, the program should behave no differently, especially since the program-
mer shouldn’t be using more than the 64 bytes requested. On the other hand,
if you happen to be an exploit developer and learn that it is possible to over-
flow this particular buffer, then you might be very interested in the fact that
nothing interesting can even begin to happen until you have supplied at least
76 bytes, which is the effective size of the buffer as far as the compiler is con-
cerned. In Chapter 8 we will return to the stack frame view and its uses in
dealing with more complex datatypes such as arrays and structures.

Searching the Database

Chapter 6

IDA makes it easy to navigate to things that you know about and designs
many of its data displays to summarize specific types of information (names,
strings, imports, and so on), making them easy to find as well. However, what
features are offered to help you conduct more general searches through
your databases? If you take time to review the contents of the Search menu,
you will find a long list of options, the majority of which take you to the next
item in some category. For example, Search » Next Code moves the cursor to
the next location containing an instruction. You may also wish to familiarize
yourself with the options available on the Jump menu. For many of these,
you are presented with a list of locations to choose from. Jump » Jump to
Function, for example, brings up a list of all functions, allowing you to
quickly choose one and navigate to it. While these canned search features
may often be useful, two types of general-purpose searches are worth more
detailed discussion: text searches and binary searches.

Text Searches

IDA text searches amount to substring searches through the disassem-
bly listing view. Text searches are initiated via Search » Text (hotkey: ALT-
T), which opens the dialog shown in Figure 6-7. A number of self-explana-
tory options dictate specific details concerning the search to be performed.
As shown, POSIX-style regular expressions are permitted. The Identifier
search is somewhat misnamed. In reality it restricts the search to find whole
words only and can match any whole word on an assembly line, including
opcode mnemonics or constant values. An Identifier search for 401116 would
fail to find a symbol named loc_s01116.

Selecting Find all occurences causes the search results to be opened in a
new window, allowing easy navigation to any single match of the search cri-
teria. Finally, the previous search can be repeated to locate the next match
using CTRL-T or Search » Next Text.

4 Text search (slowt) : A |
seig | =
Parameters Direction
r Case sensitive {* Search Down
™ Regular expression " Search Up
™ 1dentifier
™ Find all occurences
OK I Cancel |

Figure 6-7: Text Search dialog

Binary Searches

If you need to search for specific binary content such as a known sequence of
bytes, then text searches are not the answer. Instead, you need to use IDA’s
binary search facilities. While the text search searches the disassembly window,
the binary search will search only the content portion of the Hex View win-
dow. Either the hex dump or the ASCII dump can be searched, depending on
how the search string is specified. A binary search is initiated using Search »
Sequence of Bytes, or ALT-B. Figure 6-8 shows the Binary Search dialog. To
search for a sequence of hex bytes, the search string should be specified as a
space-separated list of two-digit hex values such as CA FE BA BE, which offers
identical behavior as a search for ca fe ba be, despite the availability of a Case-
sensitive option.

To alternatively search for embedded string data (effectively searching
the ASCII dump portion of the Hex View window), you must surround the
search strings with quotes. Use the Unicode strings option to search for the
Unicode version of your search string.

Disassembly Navigation 99

100

NOTE

The Case-sensitive option can be a cause of confusion. For string searches
it is fairly straightforward; a search for “hello” will successfully find “HELLO”
if Case-sensitive is not selected. Things get a little interesting if you perform
a hex search and leave Case-sensitive unchecked. If you conduct a case-
insensitive search for E9 41 €3, you may be surprised when your search matches
E9 61 (3. The two strings are considered to match because 0x41 corresponds
to the character A while 0x61 corresponds to a. So, even though you have
specified a hex search, 0x41 is considered equivalent to Ox61 because you
failed to specify a case-sensitive search.

Enter binary search string:
String | =l
{* Search Down {* Hex
" Search Up " Decimal
¢ octal

r Case-sensitive

™ Unicode strings

™ Find all occurrences
OK I Cancel | Help |

Figure 6-8: Binary Search dialog

When conducting hex searches, make sure that you specify Case-sensitive if you want to
restrict the search to exact matches. This is important if you are searching for specific
opcode sequences rather than ASCII text.

Searching for subsequent matches for binary data is done using CTRL-B
or Search » Next Sequence of Bytes. Finally, it is not necessary to conduct
your binary searches from within the Hex View window. IDA allows you to
specify binary search criteria while the disassembly view is active, in which
case a successful search will jump the disassembly window to the location
whose underlying bytes match the specified search criteria.

Summary

Chapter 6

The intent of this chapter was to provide you with the minimum essential
skills for effectively making your way around a disassembly. The overwhelming
majority of your interactions with IDA will involve the operations that we have
discussed so far. With navigation safely under your belt, the logical next step
is learning how to modify IDA databases to suit your particular needs. In the
next chapter we begin to look at how to make the most basic changes to a
disassembly as a means of adding new knowledge based on our understanding
of a binary’s content and behavior.

NOTE

DISASSEMBLY MANIPULATION

After navigation, the next most significant
features of IDA are designed to allow you to
modify the disassembly to suit your needs. In
this chapter we will show that because of IDA’s
underlying database nature, changes that you make to

a disassembly are easily propagated to all IDA subviews
to maintain a consistent picture of your disassembly. One of the most powerful
features that IDA offers is the ability to easily manipulate disassemblies to
add new information or reformat a listing to suit your particular needs. IDA
automatically handles operations such as global search and replace when it
makes sense to do so and makes trivial work of reformatting instructions and
data and vice versa, features not available in other disassembly tools.

Remember: There is no undo in IDA. Keep this in mind as you start manipulating the
database. The closest you're going to get is saving the database often and reverting to a
recently saved version of the database.

102

Names and Naming

Chapter 7

At this point, we have encountered two categories of names in IDA dis-
assemblies: names associated with virtual addresses (named locations) and
names associated with stack frame variables. In the majority of cases IDA
will automatically generate all of these names according to the guidelines
previously discussed. IDA refers to such automatically generated names as
dummy names.

Unfortunately, these names seldom hint at the intended purpose of a
location or variable and therefore don’t generally add to our understanding of
a program’s behavior. As you begin to analyze any program, one of the first
and most common ways that you will want to manipulate a disassembly listing
is to change default names into more meaningful names. Fortunately, IDA
allows you to easily change any name and handles all of the details of prop-
agating all name changes throughout the entire disassembly. In most cases,
changing a name is as simple as clicking the name you wish to change (this
highlights the name) and using the N hotkey to open a name-change dialog.
Alternatively, right-clicking the name to be changed generally presents a
context-sensitive menu that contains a Rename option, as shown in Figure 6-5.
The name-change process does differ somewhat between stack variables and
named locations, and these differences are detailed in the following sections.

Parameters and Local Variables

Names associated with stack variables are the simplest form of name in a
disassembly listing, primarily because they are not associated with a specific
virtual address and thus can never appear in the Names window. As in most
programming languages, such names are considered to be restricted in
scope based on the function to which a given stack frame belongs. Thus,
every function in a program might have its own stack variable named arg o,
but no function may have more than one variable named arg_o. The dialog
shown in Figure 7-1 is used to rename a stack variable.

4 Please enter a string ! g |

Enter stack variable name | var_5C LI

OK I Cancel | Help |

Figure 7-1: Renaming a stack variable

Once a new name is supplied, IDA takes care of changing every occur-
rence of the old name in the context of the current function. Changing the
name of var_sC to y for demo_stackframe would result in the new listing shown
here, with changes at ©.

.text:00401090
.text:00401090 ; Attributes: bp-based frame

.text:00401090

.text:00401090 demo_stackframe proc near ; CODE XREF: sub_4010C1+41\p
.text:00401090

.text:00401090 var_60 = dword ptr -60h
.text:00401090 @y = dword ptr -5Ch
.text:00401090 var_58 = byte ptr -58h
.text:00401090 var_C = dword ptr -oCh
.text:00401090 arg 4 = dword ptr 0Ch
.text:00401090 arg_8 = dword ptr 10h
.text:00401090

.text:00401090 push ebp
.text:00401091 mov ebp, esp
.text:00401093 sub esp, 112
.text:00401096 mov eax, [ebp+arg 8]
.text:00401099 mov [ebp+var C], eax
.text:0040109C mov eax, [ebp+arg 4]
.text:0040109F mov [ebp+y], eax
.text:004010A2 mov [ebp+var _60], OAh
.text:004010A9 mov [ebp+var 58], 41h
.text:004010AD mov eax, [ebp+@y]
.text:004010B0 mov [esp+4], eax
.text:004010B4 mov eax, [ebp+var 60]
.text:004010B7 mov [esp], eax
.text:004010BA call bar
.text:004010BF leave

.text:004010C0 retn

.text:004010C0 demo_stackframe endp

Should you ever wish to revert to the default name for a given variable,
open the renaming dialog and enter a blank name, and IDA will regenerate
the default name for you.

Named Locations

Renaming a named location or adding a name to an unnamed location is
slightly different from changing the name of a stack variable. The process
for accessing the name-change dialog is identical (hotkey N), but things
quickly change. Figure 7-2 shows the renaming dialog associated with named
locations.

This dialog informs you exactly what address you are naming along with
a list of attributes that can be associated with the name. The maximum name
length merely echoes a value from one of IDA’s configuration files (<IDADIR>/
cfg/ida.cfg). You are free to use names longer than this value, which will cause
IDA to complain weakly by informing you that you have exceeded the max-
imum name length and offering to increase the maximum name length for
you. Should you choose to do so, the new maximum name length value will
be enforced (weakly) only in the current database. Any new databases that
you create will continue to be governed by the maximum name length con-
tained in the configuration file.

Disassembly Manipulation 103

Address: 0x401090

Mame I demo_stackframe LI
Maximum length of new names | 15 'l
Local name prefix @@ |

™ Local name
¥ Indude in names list
™ Public name
™ Autogenerated name

™ weak name

r Create name anyway

oK I Cancel | Help

Figure 7-2: Renaming a location

The following attributes can be associated with any named location:

Local name
A local name is restricted in scope to the current function, so the unique-
ness of local names is enforced only within a given function. Like local
variables, two different functions may contain identical local names,
but a single function cannot contain two local names that are identical.
Named locations that exist outside function boundaries cannot be desig-
nated as local names. These include names that represent function names
as well as global variables. The most common use for local names is to
provide symbolic names for the targets of jumps within a function, such
as those associated with branching control structures.

Include in names list
Selecting this option causes a name to be added to the Names window,
which can make the name easier to find when you wish to return to it.
Autogenerated (dummy) names are never included in the Names window
by default.

Public name
A public name is typically a name that is being exported by a binary
such as a shared library. IDA’s parsers typically discover public names
while parsing file headers during initial loading into the database. You
can force a symbol to be treated as public by selecting this attribute. In
general, this has very little effect on the disassembly other than to cause
public annotations to be added to the name in the disassembly listing
and in the Names window.

Autogenerated name
This attribute appears to have no discernible effect on disassemblies.
Selecting it does not cause IDA to automatically generate a name.

104 Chapter 7

Weak name
A weak symbol is a specialized form of public symbol utilized only when
no public symbol of the same name is found to override it. Marking a
symbol as weak has some significance to an assembler but little signifi-
cance in an IDA disassembly.

Create name anyway
As discussed previously, no two locations within a function may be given
the same name. Similarly, no two locations outside any function (in the
global scope) may be given the same name. This option is somewhat
confusing, as it behaves differently depending on the type of name you
are attempting to create.

If you are editing a name at the global scope (such as a function name
or global variable) and you attempt to assign a name that is already in
use in the database, IDA will display the conflicting name dialog, shown
in Figure 7-3, offering to automatically generate a unique numeric suffix
to resolve the conflict. This dialog is presented regardless of whether you
have selected the Create name anyway option or not.

If, however, you are editing a local name within a function and you
attempt to assign a name that is already in use, the default behavior is
simply to reject the attempt. If you are determined to use the given name,
you must select Create name anyway in order to force IDA to generate a
unique numeric suffix for the local name. Of course, the simplest way to
resolve any name conflict is to choose a name that is not already in use.

™% The name 'bar' is already presentin the database,
Do you want add a numerical suffix to it like 'name_077

Yes Mo | Cancel

™ Don't display this message again

Figure 7-3: Name conflict dialog

Register Names

A third type of name that is often overlooked is the register name. Within
the boundaries of a function, IDA allows registers to be renamed. It may be
useful to rename a register when a compiler has elected to allocate a variable
in a register rather than on the program stack, and you wish to refer to the
variable using a name more suited to its purpose than EDX, for example.
Register renaming works much the same as renaming in any other location.
Use the N hotkey, or right-click the register name and select Rename to open
the register-renaming dialog. When you rename a register you are, in effect,
providing an alias with which to refer to the register for the duration of the
current function (IDA even denotes this alias with an alias = register syntax
at the beginning of the function). IDA takes care of replacing all instances of
the register name with the alias that you provide. It is not possible to rename
a register used in code that does not belong to a function.

Disassembly Manipulation 105

Commenting in IDA

Another useful feature in IDA is the ability to embed comments in your
databases. Comments are a particularly useful way to leave notes for yourself
regarding your progress as you analyze a program. In particular, comments
are helpful for describing sequences of assembly language instructions in a
higher-level fashion. For example, you might opt to write comments using C
language statements to summarize the behavior of a particular function. On
subsequent analysis of the function, the comments would serve to refresh your
memory faster than reanalyzing the assembly language statements.

IDA offers several styles of comments, each suited for a different pur-
pose. Comments may be associated with any line of the disassembly listing
using options available from Edit » Comments. Hotkeys or context menus
offer alternate access to IDA’s commenting features. To help you understand
IDA’s commenting features, we refer to the following disassembly of the
function bar:

.text:
.text:
.text:

.text

.text:
Jtext:
.text:
.text:
.text:
Jtext:
.text:
.text:
.text:
Jtext:
.text:
.text:
.text:
.text:
.text:
.text:

.text

Jtext:

.text

.text:
.text:
Jtext:
.text:
.text:
.text:
Jtext:
.text:
.text:
.text:
Jtext:

.text

106

00401050 ; =============== SUBROUTINE

00401050

00401050 @; void bar(int j, int k);

100401050 ; Attributes: bp-based frame

00401050

00401050 @bar proc near ; CODE XREF: demo_stackframe+2A,p
00401050

00401050 arg 0 = dword ptr 8

00401050 arg 4 = dword ptr oCh

00401050

00401050 push ebp

00401051 mov ebp, esp

00401053 sub esp, 8

00401056 ©The next three lines test j < k

00401056 mov eax, [ebp+arg O]

00401059 cmp eax, [ebp+arg 4]

0040105C jge short loc_40106C ©; Repeating comments get echoed at referencing locations
0040105 mov [esp], offset aTheSecondParam @; "The second parameter is larger"
00401065 call printf

0040106A jmp short locret 40108E @; jump to the end of the function

$0040106C ; —-- - - -
0040106C

:0040106C loc_40106C: ; CODE XREF: bar+C-j

0040106C mov eax, [ebp+arg 0] @; Repeating comments get echoed at referencing locations
0040106F cmp eax, [ebp+arg 4]

00401072 jle short loc_401082

00401074 mov [esp], offset aTheFirstParame @; "The first parameter is larger"
0040107B call printf

00401080 jmp short locret 40108E

00401082 5 ======= == m oo o oo e e
00401082

00401082 loc_401082: ; CODE XREF: bar+22-j

00401082 mov [esp], offset aTheParametersA @; "the parameters are equal”

00401089 call printf

:0040108E

Chapter 7

.text:0040108E locret_40108E: ; CODE XREF: bar+1A-j

.text:0040108E
.text:0040108E
.text:0040108F

;5 bar+30-j
leave
retn

.text:0040108F bar endp

The majority of IDA comments are prefixed with a semicolon to indicate
that the remainder of the line is to be considered a comment. This is similar to
commenting styles used by many assemblers and equates to #-style comments
in many scripting languages or //-style comments in C++.

Regular Comments

The most straightforward comment is the regular comment. Regular comments
are placed at the end of existing assembly lines, as at @ in the preceding
listing. Right-click in the right margin of the disassembly or use the colon ()
hotkey to activate the comment entry dialog. Regular comments will span
multiple lines if you enter multiple lines in the comment entry dialog. Each
of the lines will be indented to line up on the right side of the disassembly.
To edit or delete a comment, you must reopen the comment entry dialog
and edit or delete all of the comment text as appropriate. By default, regular
comments are displayed as blue text.

IDA itself makes extensive use of regular comments. During the analysis
phase, IDA inserts regular comments to describe parameters that are being
pushed for function calls. This occurs only when IDA has parameter name
or type information for the function being called. This information is typi-
cally contained within type libraries, which are discussed in Chapter 8 and
Chapter 13, but also may be entered manually.

Repeatable Comments

A repeatable comment is a comment that is entered once but that may appear
automatically in many locations throughout the disassembly. Location @
in the previous listing shows a repeatable comment. In a disassembly listing
the default color for repeatable comments is blue, making them indistinguish-
able from regular comments. It is the behavior rather than the appearance
that matters in this case. The behavior of repeatable comments is tied to the
concept of cross-references. When one program location refers to a second
location that contains a repeatable comment, the comment associated with
the second location is echoed at the first location. By default, the echoed
comment appears as gray text, making the repeated comment distinguish-
able from other comments. The hotkey for repeatable comments is the
semicolon (;), making it very easy to confuse repeatable comments and
regular comments.

In the previous listing, note that the comment at © is identical to the
comment at @. The comment at ® has been repeated because the instruction
at ©® (jge short loc_40106C) refers to the address of @ (0040106C).

Disassembly Manipulation 107

108

A regular comment added at a location that is displaying a repeated
comment overrides the repeated comment so that only the regular comment
will be displayed. If you entered a regular comment at ®, the repeatable
comment inherited from @ would no longer be displayed at ©. If you then
deleted the regular comment at ©, the repeatable comment would once
again be displayed.

A variant form of repeatable comment is associated with strings. When-
ever IDA automatically creates a string variable, a virtual repeatable com-
ment is added at all locations referencing the string variable. We say virtual
because the comment cannot be edited by the user. The content of the
virtual comment is set to the content of the string variable and displayed
throughout the database just as a repeatable comment would be. As a result,
any program locations that refer to the string variable will display the con-
tents of the string variable as a repeated comment. The three comments
annotated @ demonstrate such comments displayed as a result of references
to string variables.

Anterior and Posterior Lines

Anterior and posterior lines are full-line comments that appear either imme-
diately before (anterior) or after (posterior) a given disassembly line. These
comments are the only IDA comments that are not prefixed with the semicolon
character. An example of an anterior line comment appears at ® in the pre-
vious listing. You can distinguish an anterior line from a posterior line by
comparing the address associated with the line to the address associated with
the instruction immediately preceding or following the line.

Function Comments

Function comments allow you to group comments for display at the top of a
function’s disassembly listing. An example of a function comment is shown
at @, where the function prototype has been entered. You enter function
comments by first highlighting the function name at the top of the function
(@) and then adding either a regular or repeatable comment. Repeatable
function comments are echoed at any locations that call the commented
function. IDA will automatically generate function prototype-style comments
when you use the Set Function Type command discussed in Chapter 8.

Basic Code Transformations

Chapter 7

In many cases you will be perfectly content with the disassembly listings
that IDA generates. In some cases you won’t. As the types of files that you
analyze diverge farther and farther from ordinary executables generated with
common compilers, you may find that you need to take more control of the
disassembly analysis and display processes. This will be especially true if you
find yourself performing analysis of obfuscated code or files that utilize a
custom (unknown to IDA) file format.

Code transformations facilitated by IDA include the following:

e Converting data into code

e Converting code into data

o Designating a sequence of instructions as a function

e Changing the starting or ending address of an existing function
e Changing the display format for instruction operands

The degree to which you utilize these operations depends on a wide
variety of factors and personal preferences. In general, if a binary is very
complex, or if IDA is not familiar with the code sequences generated by the
compiler used to build the binary, then IDA will encounter more problems
during the analysis phase, and you will need to make manual adjustments to
the disassembled code.

Code Display Options

The simplest transformations that you can make to a disassembly listing involve
customizing the amount of information that IDA generates for each disas-
sembly line. Each disassembled line can be considered as a collection of parts
that IDA refers to, not surprisingly, as disassembly line parts. Labels, mnemonics,
and operands are always present in a disassembly line. You can select addi-
tional parts for each disassembly line via Options » General on the Disassembly
tab, as shown in Figure 7-4.

4 IDA Options 2x
Disassembly | Analysis | Cross-references | Strings | Browser | Graph | Misc |
—Address representation —Display di bly line parts
™ Function offsets [V Line prefixes
¥ Indude segment addresses [~ stack pointer
v Use segment names v Comments
V¥ Repeatable comments
—Display di bly lines -
F r Auto comments
v Empty lines
= [~ Bad instruction <BAD> marks
v Borders between data/code
Mumber of opcode bytes ID
™ Basic block boundaries
¥ source line numbers
Instructions indention I 16
Line prefix example: seg000:0FE4 Comments indention |40
Low suspiciousness limit |0x40 1000 Right margin | 70
High suspiciousness limit |0x404200 Spaces for tabulation IS
OK I Cancel | Help |

Figure 7-4: Disassembly line display options

Disassembly Manipulation

109

The Display Disassembly Line Parts section in the upper right offers several
options for customizing disassembly lines. For IDA’s text disassembly view,
line prefixes, comments, and repeatable comments are selected by default.
Each item is described here and shown in the listing that follows.

Line prefixes
A line prefix is the section:address portion of each disassembly line.
Deselecting this option causes the line prefix to be removed from each
disassembly line (the default in graph view). To illustrate this option, we
have disabled line prefixes in the next listing.

Stack pointer
IDA performs extensive analysis on each function in order to track
changes to the program stack pointer. This analysis is essential in
understanding the layout of each function’s stack frame. Selecting the
Stack pointer option causes IDA to display the relative change to the
stack pointer throughout the course of each function. This may be
useful in recognizing discrepancies in calling conventions (IDA may
not understand that a particular function uses stdcall, for example) or
unusual manipulations of the stack pointer. Stack pointer tracking is
shown in the column under @. In this example, the stack pointer has
changed by four bytes following the first instruction and a total of 0x7C
bytes following the third instruction. By the time the function completes,
the stack pointer is restored to its original value (a relative change of
zero bytes). Whenever IDA encounters a function return statement and
detects that the stack pointer value is not zero, an error condition is
flagged and the instruction line highlighted in red. In some cases, this
might be a deliberate attempt to frustrate automated analysis. In other
cases, it may be that a compiler utilizes prologues and epilogues that
IDA can’t accurately analyze.

Comments and repeatable comments
Deselecting either of these options inhibits the display of the respective
comment type. This may be useful if you wish to declutter a disassembly
listing.

Auto comments
IDA can automatically comment some instruction types. This can serve
as a reminder as to how particular instructions behave. No comments are
added for trivial instructions such as the x86 mov. The comments at &
are examples of auto comments. User comments take precedence over
auto comments; in this case if you want to see IDA’s automatic comment
for a line, you’ll have to remove any comments you’ve added (regular or
repeatable).

Bad instruction <BAD> marks
IDA can mark instructions that are legal for the processor but that may
not be recognized by some assemblers. Undocumented (as opposed to
illegal) CPU instructions may fall in this category. In such cases IDA will
disassemble the instruction as a sequence of data bytes and display the

110 Chapter 7

undocumented instruction as a comment prefaced with <BAD>. The intent
is to generate a disassembly that most assemblers can handle. Refer to
the IDA help file for more information on the use of <BAD> marks.

Number of opcode bytes

Most disassemblers are capable of generating listing files that display
the generated machine language bytes side by side with the assembly
language instructions from which they are derived. IDA allows you to
view the machine language bytes associated with each instruction by
synchronizing a hex display to the disassembly listing display. You can
optionally view machine language bytes mixed with assembly language
instructions by specifying the number of machine language bytes that
IDA should display for each instruction.

This is fairly straightforward when you are disassembling code for
processors that have a fixed instruction size, but it is somewhat more
difficult for variable-length instruction processors such as the x86, for
which instructions may range from one to more than a dozen bytes in
size. Regardless of the instruction length, IDA reserves display space in
the disassembly listing for the number of bytes that you specify here,
pushing the remaining portions of the disassembly line to the right to
accommodate the specified number of opcode bytes. Number of opcode
bytes has been set to 5 in the following disassembly and can be seen in
the columns under ®. The + symbol at @ indicates that the specified
instruction is too long to be fully displayed given the current settings.

o (3]

000 55 push ebp

004 89 E5 mov ebp, esp

004 83 EC 78 sub esp, 78h ®; Integer Subtraction

07C 8B 45 10 mov eax, [ebp+arg 8]

07C 89 45 F4 mov [ebp+var C], eax

07C 8B 45 oC mov eax, [ebp+arg 4]

07C 89 45 A4 mov [ebp+var_5C], eax

07C C7 45 A0 OA @00+ mov [ebp+var 60], 0Ah

07C C6 45 A8 41 mov [ebp+var 58], 41h

07C 8B 45 A4 mov eax, [ebp+var_5C]

07C 89 44 24 04 mov [esp+4], eax

07C 8B 45 A0 mov eax, [ebp+var 60]

07C 89 04 24 mov [esp], eax

07C E8 91 FF FF FF call bar ®; (all Procedure

07C C9 leave ®; High Level Procedure Exit
000 C3 retn ®; Return Near from Procedure

You can further customize the disassembly display by adjusting the
indentation values and margins shown in the lower right of Figure 7-4. Any
changes to these options affect only the current database. Global settings for
each of these options are stored in the main configuration file, <IDADIR>/
cfg/ida.cfg.

Disassembly Manipulation 111

112

Chapter 7

Formatting Instruction Operands

During the disassembly process, IDA makes many decisions regarding how
to format operands associated with each instruction. The biggest decisions
generally revolve around how to format various integer constants used by
the wide variety of instruction types. Among other things, these constants
can represent relative offsets in jump or call instructions, absolute addresses
of global variables, values to be used in arithmetic operations, or programmer-
defined constants. In order to make a disassembly more readable, IDA
attempts to use symbolic names rather than numbers whenever possible.
In some cases, formatting decisions are made based on the context of the
instruction being disassembled (such as a call instruction); in other cases,
the decision is based on the data being used (such as access to a global vari-
able or an offset into a stack frame). In many other cases, the exact context
in which a constant is being used may not be clear. When this happens, the
associated constant is typically formatted as a hexadecimal constant.

If you happen not to be one of the few people in the world who eat, sleep,
and breathe hex, then you will welcome IDA’s operand formatting features.
Right-clicking any constant in a disassembly opens a context-sensitive menu
similar to that shown in Figure 7-5.

mov [ebp+var 60], DAh

mov [ebp+var 58], 41b

mov eax, [ebp+y] % Jump to operand Enter

mov [esp+78htvar 741, %] Jumpin a new window Alt+Enter

mov eax, [ebp+var 60] . .

mov [esp+78h4var 781, |45 Jump in a new hex window

call sub_ 401050 5N Xrefs from

leave 4] Use standard symbolic constant

retn

endp fia] 65 H
010

- SUBROUTINE — 2 1000001 B |
w R

Figure 7-5: Formatting options for constants

In this case, menu options are offered enabling the constant (41h) to
be reformatted as decimal, octal, or binary values. Since the constant in this
example falls within the ASCII printable range, an option is also presented to
format the value as a character constant. In all cases, the menu displays the
exact text that will replace the operand text should a particular option be
selected.

In many cases, programmers use named constants in their source code.
Such constants may be the result of #define statements (or their equivalent),
or they may belong to a set of enumerated constants. Unfortunately, by the
time a compiler is finished with the source code, it is no longer possible to
determine whether the source used a symbolic constant or a literal, numeric
constant. IDA maintains a large catalog of named constants associated with
many common libraries such as the C standard library or the Windows API.

This catalog is accessible via the Use standard symbolic constant option on
the context-sensitive menu associated with any constant value. Selecting this
option for the constant oAh in Figure 7-5 opens the symbol-selection dialog
shown in Figure 7-6.

-ioix
Type name Dedaration Type library -

|| _f) ADSTYPE_LARGE_INTEGER. 0000000A Visual C++ v

|| _f) ADS_FORMAT_PROVIDER. 0000000A Visual C++v6

|| _f) ADS_SEARCHPREF_SORT_OMN 0000000A Visual C++ v

|| AFTP_LVL_FAILURES 0000000A Visual C++ v

|| _f) AFTP_PASSWORD_SIZE 0000000A Visual C++ v

|| _f) AFTP_RC_PROGRAM_INTERMAL_ERROR. 0000000A Visual C++ v

|| _f) AFTP_USERID_SIZE 0000000A Visual C++ v

|| _f) AFTP_VSM 0000000A Visual C++ v

|| _f) AF_CCITT 0000000A Visual C++ v

|| _f) ALG_SID_SKIPJACK 0000000A Visual C++v6

|| _f) ALPHA_FP_CONVERT 0000000A Visual C++ v

|| &> AP_SEND_PENDING_STATE 0000000A Visual C++ v -
q | of

OK I Cancel | Search | Help |

Line 41 of 346 i

Figure 7-6: Symbol-selection dialog

The dialog is populated from IDA’s internal list of constants after filtering
according to the value of the constant we are attempting to format. In this
case we see all of the constants that IDA knows to be equated with the value
oAh. If we determined that the value was being used in conjunction with the
creation of an X.25-style network connection, then we might select AF_CCITT
and end up with the following disassembly line:

.text:004010A2 mov [ebp+var_60], AF_CCITT

The list of standard constants is a useful way to determine whether a
particular constant may be associated with a known name and can save a lot
of time reading through API documentation in search of potential matches.

Manipulating Functions

There are a number of reasons that you may wish to manipulate functions
after the initial autoanalysis has been completed. In some cases, such as when
IDA fails to locate a call to a function, functions may not be recognized, as
there may be no obvious way to reach them. In other cases, IDA may fail to
properly locate the end of a function, requiring some manual intervention
on your part to correct the disassembly. IDA may have trouble locating the
end of a function if a compiler has split the function across several address
ranges or when, in the process of optimizing code, a compiler merges com-
mon end sequences of two or more functions in order to save space.

Disassembly Manipulation 113

Creating New Functions

Under certain circumstances, new functions can be created where no func-
tion exists. New functions can be created from existing instructions that do
not already belong to a function, or they can be created from raw data bytes
that have not been defined by IDA in any other manner (such as double
words or strings). You create functions by placing the cursor on the first byte
or instruction to be included in the new function and selecting Edit »
Functions » Create Function. IDA attempts to convert data to code if neces-
sary. Then it scans forward to analyze the structure of the function and search
for a return statement. If IDA can locate a suitable end of the function, it
generates a new function name, analyzes the stack frame, and restructures
the code in the form of a function. If it can’t locate the end of the function
or encounters any illegal instructions, then the operation fails.

Deleting Functions

You can delete existing functions using Edit » Functions » Delete Function.
You may wish to delete a function if you believe that IDA has erred in its
autoanalysis.

Function Chunks

Function chunks are commonly found in code generated by the Microsoft
Visual C++ compiler. Chunks are the result of the compiler moving blocks of
code that are less frequently executed in order to squeeze frequently executed
blocks into memory pages that are less likely to be swapped out.

When a function is split in such a manner, IDA attempts to locate all of
the associated chunks by following the jumps that lead to each chunk. In
most cases IDA does a good job of locating all of the chunks and listing each
chunk in the function’s header, as shown in the following partial function
disassembly:

.text:004037AE ChunkedFunc proc near
.text:004037AE
.text:004037AE var_420
.text:004037AE var_41C
.text:004037AE var_4 dword ptr -4

.text:004037AE hinstDLL dword ptr 8

.text:004037AE fdwReason = dword ptr o0Ch

.text:004037AE lpReserved dword ptr 10h

.text:004037AE

.text:004037AE ; FUNCTION CHUNK AT @.text:004040D7 SIZE 00000011 BYTES
.text:004037AE ; FUNCTION CHUNK AT .text:004129ED SIZE 0000000A BYTES
.text:004037AE ; FUNCTION CHUNK AT .text:00413DBC SIZE 00000019 BYTES
.text:004037AE

.text:004037AE push ebp

.text:004037AF mov ebp, esp

dword ptr -420h
dword ptr -41Ch

114 Chapter 7

NOTE

Function chunks are easily reached by double-clicking the address associ-
ated with the chunk, as at @. Within the disassembly listing, function chunks
are denoted by comments that delimit their instructions and that refer to the
owning function, as shown in this listing:

.text:004040D7 ; START OF FUNCTION CHUNK FOR ChunkedFunc
.text:004040D7

.text:004040D7 loc_0040C0D7: ; CODE XREF: ChunkedFunc+721j
.text:004040D7 dec eax

.text:004040D8 jnz loc_403836

.text:004040DE call sub_4040ED

.text:004040E3 jmp loc_403836

.text:004040E3 ; END OF FUNCTION CHUNK FOR ChunkedFunc

In some cases IDA may fail to locate every chunk associated with a func-
tion, or functions may be misidentified as chunks rather than as functions in
their own right. In such cases, you may find that you need to create your own
function chunks or delete existing function chunks.

You create new function chunks by selecting the range of addresses that
belong to the chunk, which must not be part of any existing function, and
selecting Edit » Functions » Append Function Tail. At this point you will be
asked to select the parent function from a list of all defined functions.

In disassembly listings, function chunks are referred to as just that: function chunks. In
the IDA menu system, functions chunks are instead referred to as function tails.

You can delete existing function chunks by positioning the cursor on any
line within the chunk to be deleted and selecting Edit » Functions » Remove
Function Tail. At this point you will be asked to confirm your action prior to
deleting the selected chunk.

If function chunks are turning out to be more trouble than they are worth,
you can ask IDA not to create function chunks by deselecting the Create func-
tion tails loader option when you first load a file into IDA. This option is one
of the loader options accessible via Kernel Options (see Chapter 4) in the
initial file-load dialog. If you disable function tails, the primary difference
that you may notice is that functions that would otherwise have contained
tails contain jumps to regions outside the function boundaries. IDA high-
lights such jumps using red lines and arrows in the arrow windows on the left
side of the disassembly. In the graph view for the corresponding function,
the targets of such jumps are not displayed.

Function Attributes

IDA associates a number of attributes with each function that it recognizes.
The function properties dialog shown in Figure 7-7 can be used to edit many
of these attributes. Each attribute that can be modified is explained here.

Name of function
An alternative means for changing the name of a function.

Disassembly Manipulation 115

116

Chapter 7

Start address

The address of the first instruction in the function. IDA most often deter-
mines this automatically, either during analysis or from the address used
during the create function operation.

Mame of function I demo_stackframe LI
Start address IW
End address I Ltext:004010C1 'l ™ Does not return

Color DEFAULT | ™ Ear function
™ Library func
Enter size of {in bytes) [~ static func

Local variables area I 0x78 'l [V BP based frame
Ox4 4

Saved registers I I [~ BP equals to SP

Purged bytes 0x0 =
-

Frame pointer delta I 0x0 l
OK I Cancel | Help |

Figure 7-7: Function editing dialog

End address

The address following the last instruction in the function. Most fre-
quently, this is the address of the location that follows the function’s
return instruction. In most cases, this address is determined automati-
cally during the analysis phase or as part of function creation. In cases
where IDA has trouble determining the true end of a function, you may
need to edit this value manually. Remember, this address is not actually
part of the function but follows the last instruction in the function.

Local variables area

This represents the number of stack bytes dedicated to local variables
(see Figure 6-4) for the function. In most cases, this value is computed
automatically based on analysis of stack pointer behavior within the
function.

Saved registers

This is the number of bytes used to save registers (see Figure 6-4) on
behalf of the caller. IDA considers the saved register region to lie on top
of the saved return address and below any local variables associated with
the function. Some compilers choose to save registers on top of a func-
tion’s local variables. IDA considers the space required to save such regis-
ters as belonging to the local variable area rather than a dedicated saved
registers area.

Purged bytes

Purged bytes shows the number of bytes of parameters that a function
removes from the stack when it returns to its caller. For cdecl functions,
this value is always zero. For stdcall functions, this value represents the

amount of space consumed by any parameters that are passed on the
stack (see Figure 6-4). In x86 programs, IDA can automatically determine
this value when it observes the use of the RET N variant of the return
instruction.

Frame pointer delta

In some cases, compilers may adjust a function’s frame pointer to point
somewhere into the middle of the local variable area rather than at the
saved frame pointer at the bottom of the local variable area. This distance
from the adjusted frame pointer to the saved frame pointer is termed the
frame pointer delta. In most cases any frame pointer delta will be computed
automatically when the function is analyzed. Compilers utilize a stack
frame delta as a speed optimization. The purpose of the delta is to keep
as many stack frame variables as possible within reach of a 1-byte signed
offset (-128..+127) from the frame pointer.

Additional attribute checkboxes are available to further characterize the
function. As with other fields within the dialog, these checkboxes generally
reflect the results of IDA’s automatic analysis. The following attributes can be
toggled on and off.

Does not return
The function does not return to its caller. When such a function is called,
IDA does not assume that execution continues following the associated
call instruction.

Far function
Used to mark a function as a far function on segmented architectures.
Callers of the function would need to specify both a segment and an
offset value when calling the function. The need to use far calls is typically
dictated by the memory model in use within a program rather than by
the fact that the architecture supports segmentation, for example, the
use of the large (as opposed to flat) memory model on an x86.

Library func
Flags a function as library code. Library code might include support
routines included by a compiler or functions that are part of a statically
linked library. Marking a function as a library function causes the function
to be displayed using the assigned library function coloring to distinguish
it from nonlibrary code.

Static func
Does nothing other than display the static modifier in the function’s
attribute list.

BP based frame
Indicates that the function utilizes a frame pointer. In most cases you
determine this automatically by analyzing the function’s prologue. If
analysis fails to recognize that a frame pointer is used in the given func-
tion, you can manually select this attribute. If you do manually select
this attribute, make sure that you adjust the saved register size (usually

Disassembly Manipulation 117

118

Chapter 7

increased by the size of the saved frame pointer) and local variable size
(usually decreased by the size of the saved frame pointer) accordingly.
For frame pointer-based frames, memory references that make use of
the frame pointer are formatted to make use of symbolic stack variable
names rather than numeric offsets. If this attribute is not set, then stack
frame references are assumed to be relative to the stack pointer register.

BP equals to SP
Some functions configure the frame pointer to point to the top of the
stack frame (along with the stack pointer) upon entering a function.
This attribute should be set in such cases. This is essentially the same as
having a frame pointer delta equal in size to the local variable area.

Stack Pointer Adjustments

As we mentioned previously, IDA makes every effort to track changes to the
stack pointer at each instruction within a function. The accuracy that IDA
manages to achieve in doing so significantly impacts the accuracy of the
function’s stack frame layout. When IDA is unable to determine whether an
instruction alters the stack pointer, you may find that you need to specify a
manual stack pointer adjustment.

The most straightforward example of such a case occurs when one func-
tion calls another function that makes use of the stdcall calling convention.
If the function being called resides in a shared library that IDA does not
have knowledge of (IDA ships with knowledge of the signatures and calling
conventions of many common library functions), then IDA will be unaware
that the function utilizes stdcall and will fail to account for the fact that the
stack pointer will have been modified by the called function prior to return-
ing. Thus, IDA will reflect an inaccurate value for the stack pointer for the
remainder of the function. The following function call sequence, in which
some_imported func resides in a shared library, demonstrates this problem
(note that the stack pointer line part option has been turned on):

.text:004010EB 01C push eax
.text:004010F3 020 push 2

.text:004010FB 024 push 1

.text:00401102 028 call some_imported func
.text:00401107 @028 mov ebx, eax

Since some_imported func uses stdcall, it cleans the three parameters from
the stack as it returns, and the correct stack pointer value at @ should be oic.
One way to fix this problem is to associate a manual stack adjustment with
the instruction at @. Stack adjustments can be added by highlighting the
address to which the adjustment applies, selecting Edit » Functions » Change
Stack Pointer (hotkey ALT-K), and specifying the number of bytes by which
the stack pointer changes, in this case 12.

While the previous example serves to illustrate a point, there is a
better solution to this particular problem. Consider the case in which
some_imported func is called many different times. In that case, we would
need to make the stack adjustment we just made at each location from which

some_imported func is called. Clearly this could be very tedious, and we might
miss something. The better solution is to educate IDA regarding the behav-
ior of some_imported func. Because we are dealing with an imported function,
when we attempt to navigate to it, we eventually end up at the import table
entry for that function, which looks something like the following entry:

.idata:00418078 ; Segment type: Externs
.idata:00418078 ; _idata
.idata:00418078 extrn some_imported func:dword ; DATA XREF: sub_4010341r

Even though this is an imported function, IDA allows you to edit one
piece of information concerning its behavior: the number of purged bytes
associated with the function. By editing this function, you can specify the
number of bytes that it clears off the stack when it returns, and IDA will
propagate the information that you supply to every location that calls the
function, instantly correcting the stack pointer computations at each of
those locations.

In order to improve its automated analysis, IDA incorporates advanced
techniques that attempt to resolve stack pointer discrepancies by solving a
system of linear equations related to the behavior of the stack pointer. As
a result, you may not even realize that IDA has no prior knowledge of the
details of functions such as some_imported func. For more information on
these techniques, refer to lifak’s blog post titled “Simplex method in IDA
Pro” at http://hexblog.com/2006/06/.

Converting Data to Code (and Vice Versa)

During the automatic analysis phase, bytes are occasionally categorized incor-
rectly. Data bytes may be incorrectly classified as code bytes and disassembled
into instructions, or code bytes may be incorrectly classified as data bytes and
formatted as data values. This happens for many reasons, including the fact
that some compilers embed data into the code section of programs or the
fact that some code bytes are never directly referenced as code and IDA opts
not to disassemble them. Obfuscated programs in particular tend to blur the
distinction between code sections and data sections.

Regardless of the reason that you wish to reformat your disassembly,
doing so is fairly easy. The first option for reformatting anything is to remove
its current formatting (code or data). It is possible to undefine functions,
code, or data by right-clicking the item that you wish to undefine and select-
ing Undefine (also Edit » Undefine or hotkey U) from the resulting context-
sensitive menu. Undefining an item causes the underlying bytes to be refor-
matted as a list of raw byte values. Large regions can be undefined by using a
click-and-drag operation to select a range of addresses prior to performing
the undefine operation. As an example, consider the simple function listing
that follows:

.text:004013E0 sub_4013E0 proc near
.text:004013E0 push ebp
.text:004013E1 mov ebp, esp

Disassembly Manipulation 119

120

.text:004013E3 pop ebp
.text:004013E4 retn
.text:004013E4 sub_4013E0 endp

Undefining this function would yield the series of uncategorized bytes
shown here, which we could choose to reformat in virtually any manner:

.text:004013E0 unk_4013E0 db 55h ; U
.text:004013E1 db 89h ; &
.text:004013E2 db OEsh ; s
.text:004013E3 db 5Dh ;]
.text:004013E4 db 0C3h ; +

To disassemble a sequence of undefined bytes, right-click the first byte
to be disassembled and select Code (also Edit » Code or hotkey C). This
causes IDA to disassemble all bytes until it encounters a defined item or an
illegal instruction. Large regions can be converted to code by using a click-
and-drag operation to select a range of addresses prior to performing the
code-conversion operation.

The complementary operation of converting code to data is a little more
complex. First, it is not possible to convert code to data using the context
menu. Available alternatives include Edit » Data and the D hotkey. Bulk con-
versions of instructions to data are easiest to accomplish by first undefining all
of the instructions that you wish to convert to data and then formatting the
data appropriately. Basic data formatting is discussed in the following section.

Basic Data Transformations

Chapter 7

Properly formatted data can be as important in developing an understanding
of a program’s behavior as properly formatted code. IDA takes information
from a variety of sources and uses many algorithms in order to determine the
most appropriate way to format data within a disassembly. A few examples
serve to illustrate how data formats are selected.

1. Datatypes and/or sizes can be inferred from the manner in which registers
are used. An instruction observed to load a 32-bit register from memory
implies that the associated memory location holds a 4-byte datatype
(though we may not be able to distinguish between a 4-byte integer and
a 4-byte pointer).

2. Function prototypes can be used to assign datatypes to function param-
eters. IDA maintains a large library of function prototypes for exactly this
purpose. Analysis is performed on the parameters passed to functions
in an attempt to tie a parameter to a memory location. If such a relation-
ship can be uncovered, then a datatype can be applied to the associated

memory location. Consider a function whose single parameter is a pointer
to a CRITICAL_SECTION (a Windows API datatype). If IDA can deter-

mine the address passed in a call to this function, then IDA can flag that
address as a CRITICAL_SECTION object.

3. Analysis of a sequence of bytes can reveal likely datatypes. This is precisely
what happens when a binary is scanned for string content. When long
sequences of ASCII characters are encountered, it is not unreasonable
to assume that they represent character arrays.

In the next few sections we discuss some basic transformations that you
can perform on data within your disassemblies.

Specifying Data Sizes

The simplest way to modify a piece of data is to adjust its size. IDA offers
a number of data size/type specifiers. The most commonly encountered

specifiers are db, dw, and dd, representing 1-, 2-, and 4-byte data, respectively.
The first way to change a data item’s size is via the Options » Setup Data Types

dialog shown in Figure 7-8.
There are two parts to this dialog.

The left side of the dialog contains a
column of buttons used to immediately
change the data size of the currently
selected item. The right side of the dialog
contains a column of checkboxes used
to configure what IDA terms the data
carousel. Note that for each button on
the left, there is a corresponding check-
box on the right. The data carousel is a
revolving list of datatypes that contains
only those types whose checkboxes are
selected. Modifying the contents of the
data carousel has no immediate impact
on the IDA display. Instead, each type on

the data carousel is listed on the context-

sensitive menu that appears when you
right-click a data item. Thus, it is easier
to reformat data to a type listed in the
data carousel than to a type not listed

21|

Immediately convert the Use the following types

current item to:

in the data carousel:

Byte

Word |
Double word |
Float |
Quadro word |
Double |
Thyte
Packed real |
QOcta word |

Tribyte |

¥ 1Byte

vV 2word

V¥ 3 Double word
[4Float

™ 5Quadro word
™ & Double

[~ ZTbyte

™ 8Packed real

™ 9 Octaword (16bytes)

™ 0Tribyte

OK | Cancel | Help

Figure 7-8: The datatype setup dialog

in the data carousel. Given the datatypes selected in Figure 7-8, right-clicking

a data item would offer you the opportunity to reformat that item as byte,

word, or double-word data.

Disass

embly Manipulation

121

122

Chapter 7

The name for the data carousel derives from the behavior of the asso-
ciated data formatting hotkey: D. When you press D, the item at the currently
selected address is reformatted to the next type in the data carousel list. With
the three-item list specified previously, an item currently formatted as db
toggles to dw, an item formatted as dw toggles to dd, and an item formatted as
dd toggles back to db to complete the circuit around the carousel. Using the
data hotkey on a nondata item such as code causes the item to be formatted
as the first datatype in the carousel list (db in this case).

Toggling through datatypes causes data items to grow, shrink, or remain
the same size. If an item’s size remains the same, then the only observable
change is in the way the data is formatted. If you reduce an item’s size, from
dd (4 bytes) to db (1 byte) for example, any extra bytes (3 in this case) become
undefined. If you increase the size of an item, IDA complains if the bytes fol-
lowing the item are already defined and asks you, in a roundabout way, if you
want IDA to undefine the next item in order to expand the current item.
The message you encounter in such cases is “Directly convert to data?” This
message generally means that IDA will undefine a sufficient number of suc-
ceeding items to satisfy your request. For example, when converting byte
data (db) to double-word data (dd), 3 additional bytes must be consumed to
form the new data item.

Datatypes and sizes can be specified for any location that describes data,
including stack variables. To change the size of stack-allocated variables,
open the detailed stack frame view by double-clicking the variable you wish
to modify; then change the variable’s size as you would any other variable.

Working with Strings

IDA recognizes a large number of string formats. By default, IDA searches
for and formats C-style null-terminated strings. To force data to be converted
to a string, utilize the options on the Edit » Strings menu to select a specific
string style. If the bytes beginning at the currently selected address form a
string of the selected style, IDA groups those bytes together into a single-string
variable. At any time, you can use the A hotkey to format the currently selected
location in the default string style.

Two dialogs are responsible for the configuration of string data. The first,
shown in Figure 7-9, is accessed via Options » ASCII String Style, though
ASCII in this case is a bit of a misnomer, as a much wider variety of string
styles are understood.

Similar to the datatype configuration dialog, the buttons on the left are
used to create a string of the specified style at the currently selected location.
A string is created only if the data at the current location conforms to the
specified string format. For Character terminated strings, up to two termination
characters can be specified toward the bottom of the dialog. The radio buttons
on the right of the dialog are used to specify the default string style associ-
ated with the use of the strings hotkey (A).

2l
Create a siring now: Setup default string type:
C-style (0 terminated) I * 1C-style (0 terminated)

DOS style (§ terminated) | " 2DOS style ($ terminated)
Pascal style (length byte) | ¢~ 3 Pascal style (ength byte)
Wide pascal (length Zbytes) | " 4\Wide pascal (lenath Zbytes)
Delphi {length 4bytes) | ¢ 5Delphi ({length 4bytes)

Unicode | " & Unicode
Unicode pascal (2bytes) | 7 Unicode pascal (2bytes)
Unicode wide pascal (4byt) | = 8 Unicode wide pascal (4byt)
Character terminated | = g Character terminated

I 0x0 'I
Second termination character I 0x0 'l

First termination character

0K | Cancel | Help |

Figure 7-9: String data configuration

The second dialog used to configure string operations is the Options »
General dialog, shown in Figure 7-10, where the Strings tab allows config-
uration of additional strings-related options. While you can specify the default
string type here as well using the available drop-down box, the majority of
available options deal with the naming and display of string data, regardless
of their type. The Name generation area on the right of the dialog is visible
only when the Generate names option is selected. When name generation is
turned off, string variables are given dummy names beginning with the asc_
prefix.

4 IDA Options L ed |
Disassembly | Analysis | Crossreferences Strings | Browser | Graph | Misc |
—Mame generation
i Generate names
V' Comment ASCII references pehi Ia
v
ASCII next line char (forces next line) I 10 N .
[~ Preserve case
String type |C (0 terminated) x|
V' Generate serial names
Serial names
MNumber |D
Width Io
oK I Cancel Help

Figure 7-10: IDA Strings options

123

Disassembly Manipulation

124

Chapter 7

When name generation is enabled, the Name generation options control
how IDA generates names for string variables. When Generate serial names is
not selected (the default), the specified prefix is combined with characters
taken from the string to generate a name that does not exceed the current
maximum name length. An example of such a string appears here:

.rdata:00402069 aThisIsACharact db 'This is a Character array',0

Title case is used in the name, and any characters that are not legal to
use within names (such as spaces) are omitted when forming the name.
The Mark as autogenerated option causes generated names to appear in a
different color (dark blue by default) than user-specified names (blue by
default). Preserve case forces the name to use characters as they appear
within the string rather than converting them to title case. Finally, Generate
serial names causes IDA to serialize names by appending numeric suffixes
(beginning with Number). The number of digits in generated suffixes is
controlled by the Width field. As configured in Figure 7-10, the first three
names to be generated would be aooo, aco1, and aoo2.

Specifying Arrays

One of the drawbacks to disassembly listings derived from higher-level lan-
guages is that they provide very few clues regarding the size of arrays. In a
disassembly listing, specifying an array can require a tremendous amount
of space if each item in the array is specified on its own disassembly line.
The following listing shows data declarations that follow the named variable
unk_402060. The fact that only the first item in the listing is referenced by any
instructions suggests that it may be the first element in an array. Rather than
being referenced directly, additional elements within arrays are often refer-
enced using more complex index computations to offset from the beginning
of the array.

.rdata:00402060 unk_402060 db 0 ; DATA XREF: sub_401350+81o
.rdata:00402060 ; sub_401350+181o
.rdata:00402061 db 0

.rdata:00402062 db 0

.rdata:00402063 db 0

.rdata:00402064 db 0

.rdata:00402065 db 0

.rdata:00402066 db 0

.rdata:00402067 db 0

.rdata:00402068 db 0

.rdata:00402069 db 0

.rdata:0040206A db 0

IDA provides facilities for grouping consecutive data definitions together
into a single array definition. To create an array, select the first element of the
array (we chose unk_402060) and use Edit » Array to launch the array-creation
dialog shown in Figure 7-11. If a data item has been defined at a given location,

NOTE

then an Array option will be available when you right-click the item. The type
of array to be created is dictated by the datatype associated with the item
selected as the first item in the array. In this case we are creating an array of
bytes.

Array element width : 1
Maximal possible size: 416
Current array size : 1
Suggested array size : 416

Mumber of elements I 416 'l
Items on a line I 1] 'l (0-max)
Element width I -1 'l (-1-none,0-auto)

Options Indexes
¥ Use “dup® construct ||#¥ Decimal

™ signed elements " Hexadecimal
™ Display indexes ' Octal

¥ Create as array " Binary

OK I Cancel | Help |

Figure 7-11: Array-creation dialog

Prior to creating an array, make sure that you select the proper size for array elements by
changing the size of the first item in the array to the appropriate value.

Following are descriptions of useful fields for array creation:

Array element width
This value indicates the size of an individual array element (1 byte in this
case) and is dictated by the size of the data value that was selected when
the dialog was launched.

Maximum possible size
This value is automatically computed as the maximum number of
elements (not bytes) that can be included in the array before another
defined data item is encountered. Specifying a larger size may be possible
but will require succeeding data items to be undefined in order to absorb
them into the array.

Number of elements
This is where you specify the exact size of the array. The total number of
bytes occupied by the array can be computed as Number of elements x
Array element width.

Items on a line
Specifies the number of elements to be displayed on each disassembly
line. This can be used to reduce the amount of space required to display
the array.

Disassembly Manipulation 125

126

Element width
This value is for formatting purposes only and controls the column width
when multiple items are displayed on a single line.

Use “dup” construct
This option causes identical data values to be grouped into a single item
with a repetition specifier.

Signed elements
Dictates whether data is displayed as signed or unsigned values.

Display indexes
Causes array indexes to be displayed as regular comments. This is useful
if you need to locate specific data values within large arrays. Selecting
this option also enables the Indexes radio buttons so you can choose the
display format for each index value.

Create as array
Not checking this may seem to go against the purpose of the dialog, and
it is usually left checked. Uncheck it if your goal is simply to specify some
number of consecutive items without grouping them into an array.

Accepting the options specified in Figure 7-11 results in the following
compact array declaration, which can be read as an array of bytes (db) named
byte 402060 consisting of the value o repeated 416 (1Aoh) times.

.rdata:00402060 byte 402060 db 1A0h dup(0) ; DATA XREF: sub_401350+81o
.rdata:00402060 ; sub_401350+181o

The net effect is that 416 lines of disassembly have been condensed to a
single line (largely due to the use of dup). In the next chapter we will discuss
the creation of arrays within stack frames.

Summary

Chapter 7

Together with the previous chapter, this chapter encompasses the most com-
mon operations that IDA users will ever need to perform. Through the use
of database modifications, you will combine your own knowledge with the
knowledge imparted by IDA during its analysis phase to produce much more
useful databases. As with source code, the effective use of names, assignment
of datatypes, and detailed comments will not only assist you in remembering
what you have analyzed but will also greatly assist others who may be required
to make use of your work. In the next chapter we continue to drill into IDA’s
capabilities by taking a look at how to deal with more complex data structures,
such as those represented by the C struct, and go on to examine some of the
low-level details of compiled C++.

DATATYPES AND
DATA STRUCTURES

The low-hanging fruit in understanding the

behavior of binary programs lies in catalog-
ing the library functions that the program calls.

A C program that calls the connect function is creating a

network connection. A Windows program that calls

RegOpenKey is accessing the Windows registry. Additional analysis is required,
however, to gain an understanding of how and why these functions are called.

Discovering how a function is called requires learning what parameters
are passed to the function. In the case of a connect call, beyond the simple
fact that the function is being called, it is important to know exactly what net-
work address the program is connecting to. Understanding the data that is
being passed into functions is the key to reverse engineering a function’s sig-
nature (the number, type, and sequence of parameters required by the func-
tion) and, as such, points out the importance of understanding how datatypes
and data structures are manipulated at the assembly language level.

128

Chapter 8

In this chapter we will examine how IDA conveys datatype information
to the user, how data structures are stored in memory, and how data within
those data structures is accessed. The simplest method for associating a spe-
cific datatype with a variable is to observe the use of the variable as a parame-
ter to a function that we know something about. During its analysis phase,
IDA makes every effort to annotate datatypes when they can be deduced
based on a variable’s use with a function for which IDA possesses a prototype.
When possible, IDA will go as far as using a formal parameter name lifted
from a function prototype rather than generating a default dummy name for
the variable. This can be seen in the following disassembly of a call to connect:

.text:004010F3 push 10h ; namelen
.text:004010F5 lea ecx, ®[ebp+name]
.text:004010F8 push ecx ; hame
.text:004010F9 mov edx, ®[ebp+s]
.text:004010FF push edx S
.text:00401100 call connect

In this listing we can see that each push has been commented with the
name of the parameter that is being pushed (taken from IDA’s knowledge of
the function prototype). In addition, two local stack variables ® have been
named for the parameters that they correspond to. In most cases, these
names will be far more informative than the dummy names that IDA would
otherwise generate.

IDA’s ability to propagate type information from function prototypes is
not limited to library functions contained in IDA’s type libraries. IDA can
propagate formal parameter names and data types from any function in your
database as long as you have explicitly set the function’s type information.
Upon initial analysis, IDA assigns dummy names and the generic type int to
all function arguments, unless through type propagation it has reason to do
otherwise. In any case, you must set a function’s type by using the Edit »
Functions » Set Function Type command, right-clicking on a function name,
and choosing Set Function Type on the context menu or using the Y hotkey.
For the function shown below, this results in the dialog shown in Figure 8-1,
in which you may enter the function’s correct prototype.

.text:00401050 ; ======== SUB RO UT I N E =========================
.text:00401050

.text:00401050 ; Attributes: bp-based frame

.text:00401050

.text:00401050 foo proc near ; CODE XREF: demo_stackframe+2A¥p
.text:00401050
.text:00401050 arg 0
.text:00401050 arg 4
.text:00401050
.text:00401050 push ebp
.text:00401051 mov ebp, esp

dword ptr 8
dword ptr 0Ch

As shown below, IDA assumes an int return type, correctly deduces that
the cdecl calling convention is used based on the type of ret instruction used,
incorporates the name of the function as we have modified it, and assumes
all parameters are of type int. Because we have not yet modified the argu-
ment names, IDA displays only their types.

B
Please enter the type dedaration | int __cded foo(int, int) LI

OK I Cancel | Help |

Figure 8-1: Setting a function’s type

If we modify the prototype to read int _ cdecl foo(float f, char *ptr),
IDA will automatically insert a prototype comment @ for the function and
change the argument names @ in the disassembly as shown below.

.text:00401050 ; ======== SUB R O U T I N E =================z=======
.text:00401050

.text:00401050 ; Attributes: bp-based frame

.text:00401050

.text:00401050 @®; int _ cdecl foo(float f, char *ptr)

.text:00401050 foo proc near ; CODE XREF: demo_stackframe+2A¥p
.text:00401050
.text:00401050 @f = dword ptr 8

.text:00401050 @ptr
.text:00401050
.text:00401050 push ebp
.text:00401051 mov ebp, esp

dword ptr oCh

Finally, IDA propagates this information to all callers of the newly modi-
fied function, resulting in improved annotation of all related function calls
as shown here. Note that the argument names f and ptr have been propa-
gated out as comments ® in the calling function and used to rename vari-
ables @ that formerly used dummy names.

.text:004010AD mov eax, [ebp+@ptr]
.text:004010B0 mov [esp+4], eax ©; ptr
.text:004010B4 mov eax, [ebp+@Ff]
.text:004010B7 mov [esp], eax e; f
.text:004010BA call foo

Returning to imported library functions, it is often the case that IDA will
already know the prototype of the function. In such cases, you can easily view
the prototype by holding the mouse over the function name.! When IDA has
no knowledge of a function’s parameter sequence, it should, at a minimum,
know the name of the library from which the function was imported (see the
Imports window). When this happens, your best resources for learning the

1. Holding the mouse over any name in the IDA display causes a tool tip—style pop-up window to
be displayed that shows up to 10 lines of disassembly at the target location. In the case of library
function names, this often includes the prototype for calling the library function.

Datatypes and Data Structures 129

130

behavior of the function are any associated man pages or other available API
documentation (such as MSDN online?). When all else fails, remember the
adage: Google is your friend.

For the remainder of this chapter, we will be discussing how to recognize
when data structures are being used in a program, how to decipher the orga-
nizational layout of such structures, and how to use IDA to improve the read-
ability of a disassembly when such structures are in use. Since C++ classes are
a complex extension of C structures, the chapter concludes with a discussion
of reverse engineering compiled C++ programs.

Recognizing Data Structure Use

Chapter 8

While primitive datatypes are often a natural fit with the size of a CPU’s regis-
ters or instruction operands, composite datatypes such as arrays and structures
typically require more complex instruction sequences in order to access the
individual data items that they contain. Before we can discuss IDA’s feature
for improving the readability of code that utilizes complex datatypes, we
need to review what that code looks like.

Array Member Access

Arrays are the simplest composite data structure in terms of memory layout.
Traditionally, arrays are contiguous blocks of memory that contain consecu-
tive elements of the same datatype. The size of an array is easy to compute, as
it is the product of the number of elements in the array and the size of each
element. Using C notation, the minimum number of bytes consumed by the
following array

int array demo[100];

is computed as

int bytes = 100 * sizeof(int);

Individual array elements are accessed by supplying an index value,
which may be a variable or a constant, as shown in these array references:

array demo[20] = 15; //fixed index into the array
for (int i = 0; i < 100; i++) {
array_demo[i] = i; //varying index into the array

}

Assuming, for the sake of example, that sizeof(int) is 4 bytes, then the
first array access at @ accesses the integer value that lies 80 bytes into the
array, while the second array access at @ accesses successive integers at offsets
0, 4, 8, .. 96 bytes into the array. The offset for the first array access can be
computed at compile time as 20 * 4. In most cases, the offset for the second

2. Please see http://msdn.microsoft.com/library/.

array access must be computed at runtime because the value of the loop

counter, i, is not fixed at compile time. Thus for each pass through the loop,
the product i * 4 must be computed to determine the exact offset into the

array. Ultimately, the manner in which an array element is accessed depends
not only on the type of index used but also on where the array happens to be
allocated within the program’s memory space.

Globally Allocated Arrays

When an array is allocated within the global data area of a program (within

the .data or .bss section, for example), the base address of the array is known
to the compiler at compile time. The fixed base address makes it possible for
the compiler to compute fixed addresses for any array element that is accessed

using a fixed index. Consider the following trivial program that accesses a

global array using both fixed and variable offsets:

int global array[3];

int main() {
int idx = 2;

global array[0] = 10;

global _array[1] = 20;

global array[2] = 30;

global array[idx] = 40;
}

This program disassembles to the following:

.text:00401000 _main proc near
.text:00401000
.text:00401000 idx = dword ptr -4
.text:00401000
.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 push ecx
.text:00401004 mov [ebp+idx], 2
.text:0040100B Omov dword_40B720, 10
.text:00401015 B@mov dword_40B724, 20
.text:0040101F ©mov dword_40B728, 30
.text:00401029 mov eax, [ebp+idx]
.text:0040102C ®mov dword 40B720[eax*4], 40
.text:00401037 Xor eax, eax
.text:00401039 mov esp, ebp
.text:0040103B pop ebp
.text:0040103C retn
.text:0040103C _main endp

While this program has only one global variable, the disassembly lines at
0, 6, and © seem to indicate that there are three global variables. The com-
putation of an offset (eax * 4) at @ is the only thing that seems to hint at the
presence of a global array named dword_40B720, yet this is the same name as
the global variable found at ©.

Datatypes and Data Structures

131

132

Chapter 8

Based on the dummy names assigned by IDA, we know that the global
array is made up of the 12 bytes beginning at address oo408720. During the
compilation process, the compiler has used the fixed indexes (0, 1, 2) to
compute the actual addresses of the corresponding elements in the array
(00408720, 00408724, and 0040B728), which are referenced using the global
variables at @, ®, and ©. Using IDA’s array-formatting operations discussed
in the last chapter (Edit » Array), dword_40B720 can be formatted as a three-
element array yielding the alternate disassembly lines shown in the following
listing. Note that this particular formatting highlights the use of offsets into
the array:

.text:0040100B mov dword_40B720, 10
.text:00401015 mov dword_40B720+4, 20
.text:0040101F mov dword_40B720+8, 30

There are two points to note in this example. First, when constant
indexes are used to access global arrays, the corresponding array elements
will appear as global variables in the corresponding disassembly. In other
words, the disassembly will offer essentially no evidence that an array exists.
The second point is that the use of variable index values leads us to the start
of the array because the base address will be revealed (as in @) when the
computed offset is added to it to compute the actual array location to be
accessed. The computation at @ offers one additional piece of significant
information about the array. By observing the amount by which the array
index is multiplied (4 in this case), we learn the size (though not the type)
of an individual element in the array.

Stack-Allocated Arrays

How does array access differ if the array is allocated as a stack variable instead?
Instinctively, we might think that it must be different since the compiler can’t
know an absolute address at compile time, so surely even accesses that use
constant indexes must require some computation at runtime. In practice,
however, compilers treat stack-allocated arrays almost identically to globally
allocated arrays.

Consider the following program that makes use of a small stack-allocated
array:

int main() {
int stack_array[3];
int idx = 2;
stack_array[0] = 10;
stack_array[1] = 20;
stack_array[2] = 30;
stack_array[idx] = 40;

The address at which stack_array will be allocated is unknown at compile
time, so it is not possible for the compiler to precompute the address of
stack_array[1] at compile time as it did in the global array example. By exam-
ining the disassembly listing for this function, we gain insight into how stack-
allocated arrays are accessed:

.text:00401000 _main proc near
.text:00401000

.text:00401000 var_10
.text:00401000 var_C

dword ptr -10h
dword ptr -oCh

.text:00401000 var_8 = dword ptr -8
.text:00401000 idx = dword ptr -4
.text:00401000

.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 sub esp, 10h
.text:00401006 mov [ebp+idx], 2
.text:0040100D Omov [ebp+var_10], 10
.text:00401014 Bmov [ebp+var C], 20
.text:0040101B ®mov [ebp+var_8], 30
.text:00401022 mov eax, [ebp+idx]
.text:00401025 Omov [ebp+eax*4+var_10], 40
.text:0040102D X0r eax, eax
.text:0040102F mov esp, ebp
.text:00401031 pop ebp
.text:00401032 retn

.text:00401032 _main endp

As with the global array example, this function appears to have three
variables (var_10, var_C, and var_8) rather than an array of three integers.
Based on the constant operands used at @, ®, and ©, we know that what
appear to be local variable references are actually references to the three
elements of stack_array whose first element must reside at var_1o0, the local
variable with the lowest memory address.

To understand how the compiler resolved the references to the other
elements of the array, consider what the compiler goes through when deal-
ing with the reference to stack_array[1], which lies 4 bytes into the array, or
4 bytes beyond the location of var_10. Within the stack frame, the compiler
has elected to allocate stack _array at ebp - ox10. The compiler understands
that stack_array[1] lies at ebp - ox10 + 4, which simplifies to ebp - oxoC. The
result is that IDA displays this as a local variable reference. The net effect
is that, similar to globally allocated arrays, the use of constant index values
tends to hide the presence of a stack-allocated array. Only the array access at
O hints at the fact that var_10 is the first element in the array rather than a
simple integer variable. In addition, the disassembly line at @ also helps us
conclude that the size of individual elements in the array is 4 bytes.

Datatypes and Data Structures 133

134

Chapter 8

Stack-allocated arrays and globally allocated arrays are thus treated very
similarly by compilers. However, there is an extra piece of information that
we can attempt to extract from the disassembly of the stack example. Based
on the location of idx within the stack, it is possible to conclude that the array
that begins with var_10 contains no more than three elements (otherwise, it
would overwrite idx). If you are an exploit developer, this can be very useful
in determining exactly how much data you can fit into an array before you
overflow it and begin to corrupt the data that follows.

Heap-Allocated Arrays

Heap-allocated arrays are allocated using a dynamic memory allocation
function such as malloc (C) or new (C++). From the compiler’s perspective,
the primary difference in dealing with a heap-allocated array is that the
compiler must generate all references into the array based on the address
value returned from the memory allocation function. For the sake of com-
parison, we now take a look at the following function, which allocates a
small array in the program heap:

int main() {
int *heap_array = (int*)malloc(3 * sizeof(int));
int idx = 2;

heap_array[o] = 10;
heap_array[1] = 20;
heap_array[2] = 30;
heap_array[idx] = 40;

In studying the corresponding disassembly that follows, you should notice
a few similarities and differences with the two previous disassemblies:

.text:00401000 _main proc near
.text:00401000

.text:00401000 heap_array = dword ptr -8
.text:00401000 idx = dword ptr -4
.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 sub esp, 8

.text:00401006 ©push 0Ch ; size t
.text:00401008 call _malloc
.text:0040100D add esp, 4

.text:00401010 mov [ebp+heap_array], eax
.text:00401013 mov [ebp+idx], 2
.text:0040101A mov eax, [ebptheap array]
.text:0040101D O®mov dword ptr [eax], 10
.text:00401023 mov ecx, [ebp+heap_array]
.text:00401026 @®mov dword ptr [ecx+4], 20
.text:0040102D mov edx, [ebp+heap array]
.text:00401030 ©Omov dword ptr [edx+8], 30

.text:00401037 mov eax, [ebp+idx]

.text:0040103A mov ecx, [ebp+heap_array]
.text:0040103D Omov dword ptr [ecx+eax*4], 40
.text:00401044 Xor eax, eax

.text:00401046 mov esp, ebp

.text:00401048 pop ebp

.text:00401049 retn

.text:00401049 _main endp

The starting address of the array (returned from malloc in the EAX regis-
ter) is stored in the local variable heap_array. In this example, unlike the pre-
vious examples, every access to the array begins with reading the contents
of heap_array to obtain the array’s base address before an offset value can be
added to compute the address of the correct element within the array. The
references to heap_array[o0], heap_array[1], and heap_array[2] require offsets of
0, 4, and 8 bytes, respectively, as seen at @, @, and ©. The operation that most
closely resembles the previous examples is the reference to heap_array[idx] at
0, in which the offset into the array continues to be computed by multiply-
ing the array index by the size of an array element.

Heap-allocated arrays have one particularly nice feature. When both the
total size of the array and the size of each element can be determined, it is
easy to compute the number of elements allocated to the array. For heap-
allocated arrays, the parameter passed to the memory allocation function
(oxoC passed to malloc at @) represents the total number of bytes allocated
to the array. Dividing this by the size of an element (4 bytes in this example,
as observed from the offsets at @, @, and ©) tells us the number of elements
in the array. In the previous example, a three-element array was allocated.

The only firm conclusion we can draw regarding the use of arrays is that
they are easiest to recognize when a variable is used as an index into the
array. The array-access operation requires the index to be scaled by the size
of an array element before adding the resulting offset to the base address of
the array. Unfortunately, as we will show in the next section, when constant
index values are used to access array elements, they do little to suggest the
presence of an array and look remarkably similar to code used to access
structure members.

Structure Member Access

C-style structs, referred to here generically as structures, are heterogeneous
collections of data that allow grouping of items of dissimilar datatypes into a
single composite datatype. A major distinguishing feature of structures is that
the data fields within a structure are accessed by name rather than by index,
as is done with arrays. Unfortunately, field names are converted to numeric
offsets by the compiler, so by the time you are looking at a disassembly, struc-
ture field access looks remarkably similar to accessing array elements using
constant indexes.

Datatypes and Data Structures 135

136

Chapter 8

When a compiler encounters a structure definition, the compiler main-
tains a running total of the number of bytes consumed by the fields of the
structure in order to determine the offset at which each field resides within
the structure. The following structure definition will be used with the upcom-
ing examples:

struct ch8 struct { //Size Minimum offset Default offset

int fieldi; /1 4 0 0
short field2; // 2 4 4
char field3; // 1 6 6
int field4; !/l 4 7 8
double fields; // 8 11 16
}; //Minimum total size: 19 Default size: 24

The minimum required space to allocate a structure is determined by
the sum of the space required to allocate each field within the structure.
However, you should never assume that a compiler utilizes the minimum
required space to allocate a structure. By default, compilers seek to align
structure fields to memory addresses that allow for the most efficient reading
and writing of those fields. For example, 4-byte integer fields will be aligned
to offsets that are divisible by 4, while 8-byte doubles will be aligned to offsets
that are divisible by 8. Depending on the composition of the structure, meet-
ing alignment requirements may require the insertion of padding bytes,
causing the actual size of a structure to be larger than the sum of its compo-
nent fields. The default offsets and resulting structure size for the example
structure shown previously can be seen in the Default offset column.

Structures can be packed into the minimum required space by using
compiler options to request specific member alignments. Microsoft Visual
C/C++ and GNU gcc/g++ both recognize the pack pragma as a means of
controlling structure field alignment. The GNU compilers additionally rec-
ognize the packed attribute as a means of controlling structure alignment on
a per-structure basis. Requesting 1-byte alignment for structure fields causes
compilers to squeeze the structure into the minimum required space. For
our example structure, this yields the offsets and structure size found in the
Minimum offset column. Note that some CPUs perform better when data is
aligned according to its type, while other CPUs may generate exceptions if
data is not aligned on specific boundaries.

With these facts in mind, we can begin our look at how structures are
treated in compiled code. For the sake of comparison, it is worth observing
that, as with arrays, access to structure members is performed by adding the
base address of the structure to the offset of the desired member. However,
while array offsets can be computed at runtime from a provided index value
(because each item in an array has the same size), structure offsets must be

precomputed and will turn up in compiled code as fixed offsets into the
structure, looking nearly identical to array references that make use of con-
stant indexes.

Globally Allocated Structures

As with globally allocated arrays, the address of globally allocated structures
is known at compile time. This allows the compiler to compute the address of
each member of the structure at compile time and eliminates the need to do
any math at runtime. Consider the following program that accesses a globally
allocated structure:

struct ch8 struct global struct;

int main() {

global struct.field1 = 10;
global_struct.field2 = 20;
global struct.field3 = 30;
global struct.field4 = 40;
global struct.field5 = 50.0;

If this program is compiled with default structure alignment options, we
can expect to see something like the following when we disassemble it:

.text:00401000 _main proc near

.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 mov dword_40EA60, 10
.text:0040100D mov word_40EA64, 20
.text:00401016 mov byte 40EA66, 30
.text:0040101D mov dword_40EA68, 40
.text:00401027 fld ds:dbl_40B128
.text:0040102D fstp dbl_40EA70
.text:00401033 Xor eax, eax
.text:00401035 pop ebp
.text:00401036 retn

.text:00401036 _main endp

This disassembly contains no math whatsoever to access the members of
the structure, and, in the absence of source code, it would not be possible to
state with any certainty that a structure is being used at all. Because the com-
piler has performed all of the offset computations at compile time, this pro-
gram appears to reference five global variables rather than five fields within a
single structure. You should be able to note the similarities with the previous
example regarding globally allocated arrays using constant index values.

Datatypes and Data Structures 137

138

Chapter 8

Stack-Allocated Structures

Like stack-allocated arrays (see page 132), stack-allocated structures are
equally difficult to recognize based on stack layout alone. Modifying the pre-
ceding program to use a stack-allocated structure, declared in main, yields the
following disassembly:

.text:00401000 _main proc near
.text:00401000
.text:00401000 var_18 = dword ptr -18h

.text:00401000 var_14
.text:00401000 var_12
.text:00401000 var_10

word ptr -14h
byte ptr -12h
dword ptr -10h

.text:00401000 var_8 = gqword ptr -8
.text:00401000

.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 sub esp, 18h
.text:00401006 mov [ebp+var_18], 10
.text:0040100D mov [ebp+var_14], 20
.text:00401013 mov [ebp+var_12], 30
.text:00401017 mov [ebp+var_10], 40
.text:0040101E fld ds:dbl_40B128
.text:00401024 fstp [ebp+var 8]
.text:00401027 Xor eax, eax
.text:00401029 mov esp, ebp
.text:0040102B pop ebp
.text:0040102C retn

.text:0040102C _main endp

Again, no math is performed to access the structure’s fields since the
compiler can determine the relative offsets for each field within the stack
frame at compile time. In this case, we are left with the same, potentially mis-
leading picture that five individual variables are being used rather than a single
variable that happens to contain five distinct fields. In reality, var_18 should be
the start of a 24-byte structure, and each of the other variables should some-
how be formatted to reflect the fact that they are fields within the structure.

Heap-Allocated Structures

Heap-allocated structures turn out to be much more revealing regarding the
size of the structure and the layout of its fields. When a structure is allocated
in the program heap, the compiler has no choice but to generate code to
compute the proper offset into the structure whenever a field is accessed.
This is a result of the structure’s address being unknown at compile time. For
globally allocated structures, the compiler is able to compute a fixed starting
address. For stack-allocated structures, the compiler can compute a fixed
relationship between the start of the structure and the frame pointer for the

enclosing stack frame. When a structure has been allocated in the heap, the
only reference to the structure available to the compiler is the pointer to the

structure’s starting address.

Modifying our structure example once again to make use of a heap-
allocated structure results in the following disassembly. Similar to the
heap-allocated array example from page 134, we declare a pointer within
main and assign it the address of a block of memory large enough to hold

our structure:

.text:
text:
100401000 heap_struct
.text:
.text:
text:
Ltext:
.text:
.text:
Jtext:
Ltext:
.text:
.text:
Ctext:
Ctext:
.text:
.text:
Ctext:
Ltext:
.text:
.text:
:0040103D
Ltext:
.text:
.text:
text:
Ltext:

.text

.text

00401000 _main
00401000

00401000
00401000
00401001
00401003
00401004
00401006
00401008
0040100E
00401011
00401014
0040101A
0040101D
00401023
00401026
0040102A
0040102D
00401034
00401037

00401040
00401042
00401044
00401045
00401045 _main

proc near
= dword ptr -4
push ebp
mov ebp, esp
push ecx
O®push 24 ; size_t
call _malloc
add esp, 4
mov [ebp+heap_struct], eax
mov eax, [ebp+heap struct]
Omov dword ptr [eax], 10
mov ecx, [ebp+heap_struct]
Bmov word ptr [ecx+4], 20
mov edx, [ebp+heap struct]
©mov byte ptr [edx+6], 30
mov eax, [ebp+heap struct]
Omov dword ptr [eax+8], 40
mov ecx, [ebp+heap struct]
f1d ds:dbl_40B128
Ofstp gword ptr [ecx+10h]
xor eax, eax
mov esp, ebp
pop ebp
retn
endp

In this example, unlike the global and stack-allocated structure exam-
ples, we are able to discern the exact size and layout of the structure. The

structure size can be inferred to be 24 bytes based on the amount of memory
requested from malloc @. The structure contains the following fields at the
indicated offsets:

e A 4-byte (dword) field at offset 0 @
e A 2-byte (word) field at offset 4 @
e A l-byte field at offset 6 ©

e A 4-byte (dword) field at offset 8 @

e An 8-byte (qword) field at offset 16 (10h) ©

Datatypes and Data Structures

139

140

Chapter 8

Based on the use of floating point instructions, we can further deduce
that the qword field is actually a double. The same program compiled to pack
structures with a 1-byte alignment yields the following disassembly:

.text:00401000 _main proc near

.text:00401000

.text:00401000 heap_struct = dword ptr -4

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 push ecx

.text:00401004 push 19 ; size t
.text:00401006 call _malloc

.text:0040100B add esp, 4

.text:0040100E mov [ebptheap_struct], eax
.text:00401011 mov eax, [ebp+heap struct]
.text:00401014 mov dword ptr [eax], 10
.text:0040101A mov ecx, [ebp+heap_struct]
.text:0040101D mov word ptr [ecx+4], 20
.text:00401023 mov edx, [ebp+heap struct]
.text:00401026 mov byte ptr [edx+6], 30
.text:0040102A mov eax, [ebp+heap struct]
.text:0040102D mov dword ptr [eax+7], 40
.text:00401034 mov ecx, [ebp+heap struct]
.text:00401037 fld ds:dbl_40B128
.text:0040103D fstp gword ptr [ecx+0Bh]
.text:00401040 Xor eax, eax
.text:00401042 mov esp, ebp
.text:00401044 pop ebp

.text:00401045 retn

.text:00401045 _main endp

The only changes to the program are the smaller size of the structure
(now 19 bytes) and the adjusted offsets to account for the realignment of
each structure field.

Regardless of the alignment used when compiling a program, finding
structures allocated and manipulated in the program heap is the fastest way
to determine the size and layout of a given data structure. However, keep in
mind that many functions will not do you the favor of immediately accessing
every member of a structure to help you understand the structure’s layout.
Instead, you may need to follow the use of the pointer to the structure and
make note of the offsets used whenever that pointer is dereferenced. In this
manner, you will eventually be able to piece together the complete layout of
the structure.

Arrays of Structures

Some programmers would say that the beauty of composite data structures is
that they allow you to build arbitrarily complex structures by nesting smaller
structures within larger structures. Among other possibilities, this capability
allows for arrays of structures, structures within structures, and structures

that contain arrays as members. The preceding discussions regarding arrays
and structures apply just as well when dealing with nested types such as these.
As an example, consider an array of structures like the following simple pro-
gram in which heap_struct points to an array of five ch8_struct items:

int main() {
int idx = 1;
struct ch8 struct *heap struct;
heap_struct = (struct ch8_struct*)malloc(sizeof(struct ch8 struct) * 5);
heap_struct[idx].field1l = 10;

}

The operations required to access field1 at @ include multiplying the
index value by the size of an array element, in this case the size of the struc-
ture, and then adding the offset to the desired field. The corresponding dis-
assembly is shown here:

.text:00401000 _main proc near

.text:00401000

.text:00401000 idx = dword ptr -8

.text:00401000 heap_struct = dword ptr -4

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 sub esp, 8

.text:00401006 mov [ebp+idx], 1
.text:0040100D Bpush 120 ; size t
.text:0040100F call _malloc

.text:00401014 add esp, 4

.text:00401017 mov [ebp+heap_struct], eax
.text:0040101A mov eax, [ebp+idx]
.text:0040101D ©Oimul eax, 24

.text:00401020 mov ecx, [ebp+heap struct]
.text:00401023 @®mov dword ptr [ecx+eax], 10
.text:0040102A Xor eax, eax
.text:0040102C mov esp, ebp
.text:0040102E pop ebp

.text:0040102F retn

.text:0040102F _main endp

The disassembly reveals 120 bytes (@) being requested from the heap.
The array index is multiplied by 24 at ® before being added to the start
address for the array at @. No additional offset is required in order to gener-
ate the final address for the reference at @. From these facts we can deduce
the size of an array item (24), the number of items in the array (120 / 24 = 5),
and the fact that there is a 4-byte (dword) field at offset O within each array ele-
ment. This short listing does not offer enough information to draw any con-
clusions about how the remaining 20 bytes within each structure are
allocated to additional fields.

Datatypes and Data Structures 141

142

Creating IDA Structures

Chapter 8

In the last chapter we saw how IDA’s array-aggregation capabilities allow dis-
assembly listings to be simplified by collapsing long lists of data declarations
into a single disassembly line. In the next few sections we take a look at IDA’s
facilities for improving the readability of code that manipulates structures.
Our goal is to move away from structure references such as [edx + 10h] and
toward something more readable like [edx + ch8_struct.fields].

Whenever you discover that a program is manipulating a data structure,
you need to decide whether you want to incorporate structure field names
into your disassembly or whether you can make sense of all the numeric off-
sets sprinkled throughout the listing. In some cases, IDA may recognize the
use of a structure defined as part of the C standard library or the Windows
API. In such cases, IDA may have knowledge of the exact layout of the struc-
ture and be able to convert numeric offsets into more symbolic field names.
This is the ideal case, as it leaves you with a lot less work to do. We will return
to this scenario once we understand a little more about how IDA deals with
structure definitions in general.

Creating a New Structure (or Union)

When a program appears to be using a structure for which IDA has no layout
knowledge, IDA offers facilities for specifying the composition of the struc-
ture and having the newly defined structure incorporated into the disassem-
bly. Structure creation in IDA takes place within the Structures window (see
Figure 8-2). No structure can be incorporated into a disassembly until it is
first listed in the Structures window. Any structure that is known to IDA and
that is recognized to be used by a program will automatically be listed in the
Structures window.

|
; In=/Del : create/delete structure ;I
: DfAS* : create struocture member (data/ascii/array)
) : rename structure or structure member
H : delete structure member
= |
o 5|

Figure 8-2: The Structures window

There are two reasons why the use of a structure may go unrecognized
during the analysis phase. First, even though IDA may have knowledge of a
particular structure’s layout, there may be insufficient information for IDA to
conclude that the program utilizes the structure. Second, the structure may
be a nonstandard structure that IDA knows nothing about. In both cases the
problem can be overcome, and in both cases the solution begins with the
Structures window.

The first four lines of text in the Structures window serve as a constant
reminder of the operations that are possible within the window. The princi-
pal operations we are concerned with involve adding, removing, and editing
structures. Adding a structure is initiated using the INSERT key, which opens
the Create Structure/Union dialog shown in Figure 8-3.

Structure name Ichs_sh'uct LI

[~ Create before current structure
[Dpon'tindude in the list

[™ Create union

Add standard structure |
OK I Cancel | Help |

Figure 8-3: The Create Structure/Union dialog

In order to create a new structure, you must first specify the name in the
Structure name field. The first two checkboxes determine where or whether
the new structure will be displayed within the Structures window. The third
checkbox, Create union, specifies whether you are defining a structure or a
C-style union.® For structures, the size is computed as the sum of the sizes of
each component field, while for unions, the size is computed as the size of the
largest component field. The Add standard structure button is used to access
the list of all structure datatypes that IDA is currently aware of. The behavior of
this button is discussed in “Using Standard Structures” on page 151. Once you
specify a structure name and click OK, an empty structure definition will be
created in the Structures window, as shown in Figure 8-4.

|
00000000 : Ins/Del : create/delete structure -
00000000 ; DfAS* : create strocture member (data/ascii/array)
Qo0D0000D : W : rename structure or structure member
Qo0D0000D : U : delete structure member

jooooo000

00000000

00000000 ch8 struct stroe ; (sizeof=0x0)

00000000 ch8 struct ends

00000000

| [1- che struct-ooo0 -
| | _’l_I

Figure 8-4: An empty structure definition

This structure definition must be edited to complete the definition of
the structure layout.

3. A union is similar to a struct in that it may consist of many named fields, each of differing type.
The difference between the two lies in the fact that fields within a union directly overlap one
another so that the size of a union is equal to the size of the largest field.

Datatypes and Data Structures 143

144

Chapter 8

Editing Structure Members

In order to add fields to your new structure, you must make use of the field-
creation commands D, A, and the asterisk key (*) on the numeric keypad.
Initially, only the D command is useful, and unfortunately, its behavior is
highly dependent on the location of the cursor. For that reason, the follow-
ing steps are recommended for adding fields to a structure.

1. Toadd a new field to a structure, position the cursor on the last line
of the structure definition (the one containing ends) and press D. This
causes a new field to be added to the end of the structure. The size of
the new field will be set according to the first size selected on the data
carousel (Chapter 7). The name of the field will initially be field n,
where v is the numeric offset from the start of the structure to the start
of the new field (field_o, for example).

2. Should you need to modify the size of the field, you may do so by first
ensuring that the cursor is positioned on the new field name and then
selecting the correct data size for the field by repeatedly pressing D in
order to cycle through the datatypes on the data carousel. Alternatively,
you may use Options » Setup Data Types to specify a size that is not avail-
able on the data carousel. If the field is an array, right-click the name and
select Array to open the array specification dialog (Chapter 7).

3. Tochange the name of a structure field, click the field name and use the
N hotkey, or right-click the name and select Rename; then provide a new
name for the field.

The following helpful hints may be of use as you define your own
structures.

e The byte offset to a field is displayed as an eight-digit hex value on the
left side of the Structures window.

o Every time you add or delete a structure field or change the size of an
existing field, the new sizeof the structure will be reflected on the first
line of the structure definition.

e You can add comments to a structure field just as you can add comments
to any disassembly line. Right-click (or use a hotkey) on the field you
wish to add a comment to and select one of the available comment
options.

e Contrary to the instructions at the top of the Structures window, the U
key will delete a structure field only if it is the last field in the structure.
For all other fields, pressing U merely undefines the field, which removes
the name but does not remove the bytes allocated to the field.

e You are responsible for proper alignment of all fields within a structure

definition. IDA makes no distinction between packed or unpacked struc-
tures. If you require padding bytes to properly align fields, then you are

responsible for adding them. Padding bytes are best added as dummy
fields of the proper size, which you may or may not choose to undefine
once you have added additional fields.

e Bytesallocated in the middle of a structure can be removed only by first
undefining the associated field and then selecting Edit » Shrink Struct
Type to remove the undefined bytes.

o Bytes may be inserted into the middle of a structure by selecting the field
that will follow the new bytes and then using Edit » Expand Struct Type
to insert a specified number of bytes before the selected field.

o Ifyou know the size of a structure but not the layout, you need to create
two fields. The first field should be an array of size-1 bytes. The second
field should be a 1-byte field. After you have created the second field,
undefine the first (array) field. The size of the structure will be pre-
served, and you can easily come back later to define fields and their sizes
as you learn more about the layout of the structure.

Through repeated application of these steps (add field, set field size, add
padding, and so on), you can create an IDA representation of the ch8_struct
(unpacked version), as shown in Figure 8-5.

|
00000000 : Ins/Del : create/delete structure -
00000000 : DfAS* : create struocture member (data/ascii/array)
Qo0D0000D : N : rename structure or structure member
Qo0D000OD ; U : delete structure member

joooooo0o0

00000000

00000000 ch8 struct stroec ; (sizeof=0x18)

00000000 field O dd ?

00000004 field 4 dw ?

0000006 field 6 db ?

Q0000007 db ? ; undefined

CO0000O0E field 8 dd ?

(Qo00000C db ? ; undefined

0000000D db ? ; undefined

(O00D00DDE db ? ; undefined

(O00D000DF db ? ; undefined

00000010 field 10 dg ?

00000018 ch8 struct ends

[[1- che struct-oo0D -
4 | _’l_I

Figure 8-5: Manually generated definition of the ch8 struct

In this example, padding bytes have been included to achieve proper
field alignment, and fields have been renamed according to the names used
in the preceding examples. Note that the offsets to each field and the overall
size (24 bytes) of the structure match the values seen in the earlier examples.

If you ever feel that a structure definition is taking up too much space in
your Structures window, you can collapse the definition into a one-line sum-
mary by choosing any field within the structure and pressing the minus key
(-) on the numeric keypad. This is useful once a structure has been com-
pletely defined and requires little further editing. The collapsed version of
ch8_struct is shown in Figure 8-6.

Datatypes and Data Structures 145

146

The majority of structures that IDA is already aware of will be displayed
in this one-line fashion since it is not expected that they will need to be
edited. The collapsed display provides a reminder that you can use the plus
key (+) on the numeric keypad to expand the definition. Alternatively, dou-
ble-clicking the name of the structure will also expand the definition.

£
00000000 ; In=/Del : create/delete structure -
DD0D0DDO0 ; DfA/* : create structure member (data/ascii/array)

00000000 ; H : rename struocture or structure member

oooooo0D @ O : delete strocture member

00000000 ; [0OOOOO1E8 BYTES. COLLAPSED STRUCT ch8 struct. PRESS KEYPAD "+" TO EXPAND]

| [1. ch& struct:0000 -
| | »

Figure 8-6: A collapsed structure definition

Stack Frames as Specialized Structures

You may notice that structure definitions look somewhat similar to the
detailed stack frame views associated with functions. This is no accident, as
internally IDA treats both identically. Both represent contiguous blocks of
bytes that can be subdivided into named component fields, each associated
with a numeric offset into the structure. The minor difference is that stack
frames utilize both positive and negative field offsets centered on a frame
pointer or return address, while structures use positive offsets from the
beginning of the structure.

Using Structure Templates

Chapter 8

There are two ways to make use of structure definitions in your disassemblies.
First, you can reformat memory references to make them more readable by
converting numeric structure offsets such as [ebx+8] into symbolic references
such as [ebx+ch8_struct.field4]. The latter form provides far more informa-
tion about what is being referenced. Because IDA uses a hierarchical nota-
tion, it is clear exactly what type of structure, and exactly which field within
that structure, is being accessed. This technique for applying structure tem-
plates is most often used when a structure is being referenced through a
pointer. The second way to use structure templates is to provide additional
datatypes that can be applied to stack and global variables.

In order to understand how structure definitions can be applied to
instruction operands, it is helpful to view each definition as something simi-
lar to set of enumerated constants. For example, the definition of ch8_struct
in Figure 8-5 might be expressed in pseudo-C as the following:

enum {
ch8 struct.field1 = o0,
ch8 struct.field2 =
ch8_struct.field3 =

| I
N B
- -

ch8_struct.field4 = 8,
ch8 struct.fields = 16

b

Given such a definition, IDA allows you to reformat any constant value
used in an operand into an equivalent symbolic representation. Figure 8-7
shows just such an operation in progress. The memory reference [ecx+10h]
may represent an access to fields within a ch8_struct.

mov [ecx+ch8 struct.fieldl], 10
mov [ecx+ch8 struct.field2], 20
mov [ecx+ch8 struct.field3], 30
mov [ecx+ch8 struct.field4], 40
fld ds:dbl 40123E
f=tp gword ptr [ecx+10h1
retn % Jump to operand Enter
endp |§| Jump in & new window Alt+Enter
@ Jump in @ new hex window L
dg 50.0 © faN ¥refs from
d e
ends Structure offset [l %) qword ptr [ecx+CPPEH_RECORD. msEH_pr]
ES] Use standard symbolic constant B} [ecx+chB_struct. fields]
d]
er E qword pir [ecx+16] H E> qword ptr [ecx+STARTUPINFOA..dwX]
T

Figure 8-7: Applying a structure offset

The Structure offset option, available by right-clicking 10h in this case,
offers three alternatives for formatting the instruction operand. The alterna-
tives are pulled from the set of structures containing a field whose offset is 16.

As an alternative to formatting individual memory references, stack and
global variables can be formatted as entire structures. To format a stack vari-
able as a structure, open the detailed stack frame view by double-clicking the
variable to be formatted as a structure and then use Edit » Struct Var (ALT-Q)
to display a list of known structures similar to that shown in Figure 8-8.

stack of sub_401000 ! |
e

00000018 =]
00000018 var 18
-00000014 var_14
-00000012 var_12
-00000011
-00000010 var_10
-0000000C
-0000000B
-0000000A
-00000009
00000008 var_8
+00000000 =
+00000004 T
+00000008

| [se++o0000000 -
1] | »

R R85

; ondefined

; ondefined
; ondefined
; ondefined
; ondefined

R R O B s |

2
4 duop(?)
4 duop(?)

EEEBEBEER

Figure 8-8: The structure selection dialog

Selecting one of the available structures combines the corresponding
number of bytes in the stack into the corresponding structure type and refor-
mats all related memory references as structure references. The following

Datatypes and Data Structures 147

code is an excerpt from the stack-allocated structure example we examined

previously:

.text:00401006 mov [ebp+var_18], 10
.text:0040100D mov [ebp+var_14], 20
.text:00401013 mov [ebp+var_12], 30
.text:00401017 mov [ebp+var_10], 40
.text:0040101E fld ds:dbl_40B128
.text:00401024 fstp [ebp+var_8]

Recall that we concluded that var_18 is actually the first field in a 24-byte
structure. The detailed stack frame for this particular interpretation is shown
in Figure 8-9.

Stack of sub_401000 | |
e ——

00000018 =]
00000018 var 18
-00000014 var_14
-00000012 var_12
-00000011
-00000010 var_10
-0000000C
-0000000B
-0000000A
-00000009
00000008 var_8
+00000000 =
+00000004 T
+00000008

| [se++o0000000 -
1] | »

R R85

; ondefined

; ondefined
; ondefined
; ondefined
; ondefined

R R O B s |

2
4 duop(?)
4 duop(?)

EEEBEBEER

Figure 8-9: Stack allocated structure prior to formatting

Selecting var_18 and formatting it as a ch8_struct (Edit » Struct Var) col-
lapses the 24 bytes (the size of ch8_struct) beginning at var_18 into a single
variable, resulting in the reformatted stack display shown in Figure 8-10. In
this case, applying the structure template to var_18 will generate a warning
message indicating that some variables will be destroyed in the process of
converting var_18 into a structure. Based on our earlier analysis, this is to be
expected, so we simply acknowledge the warning to complete the operation.

Stack of sub_401000

—-00000018 -
-00000018 var 18 ch8 struct ? |
+00000000 s db 4 dup(?)

+00000004 T db 4 dup(?)

+00000008

| [se++o0000000 -
1] | »

[

Figure 8-10: Stack allocated structure after formatting

148 Chapter 8

Following reformatting, IDA understands that any memory reference
into the 24-byte block allocated to var_18 must refer to a field within the
structure. When IDA encounters such a reference, it makes every effort to
resolve the memory reference to one of the defined fields within the struc-
ture variable. In this case, the disassembly is automatically reformatted to
incorporate the structure layout, as shown here:

.text:00401006 mov [ebp+var_18.field1], 10
.text:0040100D mov [ebp+var_18.field2], 20
.text:00401013 mov [ebp+var 18.field3], 30
.text:00401017 mov [ebp+var_18.field4], 40
.text:0040101E fld ds:dbl_40B128
.text:00401024 fstp [ebp+var_18.fields]

The advantage to using structure notation within the disassembly is an
overall improvement in the readability of the disassembly. The use of field
names in the reformatted display provides a much more accurate reflection
of how data was actually manipulated in the original source code.

The procedure for formatting global variables as structures is nearly
identical to that used for stack variables. To do so, select the variable or
address that marks the beginning of the structure and use Edit » Struct Var
(ALT-Q) to choose the appropriate structure type. As an alternative for unde-
fined global data only (not stack data), you may use IDA’s context-sensitive
menu, and select the structure option to view and select an available struc-
ture template to apply at the selected address.

Importing New Structures

After working with IDA’s structure-creation and editing features for a while,
you may find yourself longing for an easier way to do things. Fortunately,
IDA does offer some shortcuts concerning new structures. IDA is capable of
parsing individual C (not C++) data declarations, as well as entire C header
files, and automatically building IDA structure representations for any struc-
tures defined in those declarations or header files. If you happen to have the
source code, or at least the header files, for the binary that you are reversing,
then you can save a lot of time by having IDA extract related structures
directly from the source code.

Parsing C Structure Declarations

A Local Types subview window is available by using the View »
OpenSubviews » Local Types command. The Local Types window displays

a list of all types that have been parsed into the current database. For new
databases, the Local Types window is initially empty, but the window offers
the capability to parse new types via the insert key or the Insert option from
the context menu. The resulting type entry dialog is shown in Figure 8-11.

Datatypes and Data Structures 149

150

Chapter 8

Flease enter new type dedaration(s)

struct chd_struct {
int field1;
short field2;
char field3;
int field4;
double fields;
b

oK I Cancel | Help |

Figure 8-11: The Local Types entry dialog

Errors encountered while parsing the new type are displayed in the IDA
output window. If the type declaration is successfully parsed, the type and its
associated declaration are listed in the Local Types window, as shown in Fig-
ure 8-12.

Local Types i #
Ordinal | MName | Size I Sync | Description

J |E| 1 cha_struct 00000014 struct {int field1;__int16 field2;char field3;int field4;double fields;}
4 | o

Figure 8-12: The Local Types window

Note that the IDA parser utilizes a default structure member alignment
of 4 bytes. If your structure requires an alternate alignment, you may include
it, and IDA will recognize a pragma pack directive to specify the desired mem-
ber alignment.

Datatypes added to the Local Types windows are not immediately avail-
able via the Structures window. There are two methods for adding local type
declarations to the Structures window. The easiest method is to right-click
on the desired local type and select Synchronize to idb. Alternatively, as
each new type is added to a list of standard structures; the new type may be
imported into the Structures window as described in “Using Standard Struc-
tures” on page 151.

Parsing C Header Files

To parse a header file, use File » Load File » Parse C Header File to choose
the header you wish to parse. If all goes well, IDA returns the message:
Compilation successful. If the parser encounters any problems, you are noti-
fied that there were errors. Any associated error messages are displayed in
the IDA output window.

IDA adds all structures that were successfully parsed to both the list of
local types and the list of standard structures (to the end of the list to be
exact) available in the current database. When a new structure has the same
name as an existing structure, the existing structure definition is overwritten

with the new structure layout. None of the new structures appear in the
Structures window until you elect to explicitly add them, as described above
for local types or in“Using Standard Structures” on page 151.

When parsing C header files, it is useful to keep the following points
in mind:

e The built-in parser does not necessarily use the same default structure
member alignment as your compiler, though it does honor the pack
pragma. By default, the parser creates structures that are 4-byte aligned.

e The parser understands the C preprocessor include directive. To resolve
include directives, the parser searches the directory containing the file
being parsed as well as any directories listed as Include directories in the
Options » Compiler configuration dialog.

e The parser understands only C standard datatypes. However, the parser
also understands the preprocessor define directive as well as the C typedef
statement. Thus, types such as uint32_t will be correctly parsed if the
parser has encountered an appropriate typedef prior to their use.

¢ When you don’t have any source code, you may find it easier to quickly
define a structure layout in C notation using a text editor and parse the
resulting header file or paste the declaration as a new local type, rather
than using IDA’s cumbersome manual structure-definition tools.

e New structures are available only in the current database. You must
repeat the structure-creation steps in each additional database for
which you wish to use the structures. We will discuss some steps for
simplifying this process when we discuss TIL files later in the chapter.

In general, to maximize your chances of successfully parsing a header
file, you will want to simplify your structure definitions as much as possible
through the use of standard C datatypes and minimizing the use of include
files. Remember, the most important thing about creating structures in IDA
is to ensure that the layout is correct. Correct layout depends far more on the
correct size of each field and the correct alignment of the structure than get-
ting the exact type of each field just right. In other words, if you need to
replace all occurrences of uint32_t with int in order to get a file to parse cor-
rectly, you should go right ahead and do it.

Using Standard Structures

As mentioned previously, IDA recognizes a tremendous number of data
structures associated with various library and API functions. When a database
is initially created, IDA attempts to determine the compiler and platform
associated with the binary and loads the structure templates derived from
related library header files. As IDA encounters actual structure manipula-
tions in the disassembly, it adds the appropriate structure definitions to the
Structures window. Thus, the Structures window represents the subset of
known structures that happen to apply to the current binary. In addition to

Datatypes and Data Structures 151

152

Chapter 8

creating your own custom structures, you can add additional standard struc-
tures to the Structures window by drawing from IDA’s list of known structure
types.

The process for adding a new structure begins by pressing the INSERT key
inside the Structures window. Figure 8-3 showed the Create Structure/Union
dialog, one component of which is the Add standard structure button. Click-
ing this button grants access to the master list of structures pertaining to the
current compiler (as detected during the analysis phase) and file format.
This master list of structures also contains any structures that have been
added to the database as a result of parsing C header files. The structure
selection dialog shown in Figure 8-13 is used to choose a structure to add
to the Structures window.

t Please choose a structure _ 10l =|

Type name I Dedaration I Type library ;I
IMAGE_DATA_DIRECTORY struct _IMAGE_DATA_DIRECTORY MS SDK (Windows XF)

&3 IMAGE_DEBUG_DIRECTORY struct _IMAGE_DEBUG_DIRECTORY MS SDK (Windows XP) 1
IMAGE_DEBUG_INFORMATION struct _IMAGE_DEBUG_INFORMATION MS SDK (Windows XF)

&3 IMAGE_DEBUG_MISC struct _IMAGE_DEBUG_MISC MS SDK (Windows XP)
IMAGE_DOS_HEADER. struct _IMAGE_DOS_HEADER MS SDK (Windows XP)
IMAGE_EXPORT_DIRECTORY struct _IMAGE_EXPORT_DIRECTORY MS SDK (Windows XF)
IMAGE_FILE_HEADER. struct _IMAGE_FILE_HEADER MS SDK (Windows XP) v

i | 3

OK I Cancel | Search | Help
Line 6517 of 23539 v

Figure 8-13: Standard structure selection

You may utilize the search functionality to locate structures based on a
partial text match. The dialog also allows for prefix matching. If you know
the first few characters of the structure name, simply type them in (they will
appear in the status bar at the bottom of the dialog), and the list display will
jump to the first structure with a matching prefix. Choosing a structure adds
the structure and any nested structures to the Structures window.

As an example of using standard structures, consider a case in which you
wish to examine the file headers associated with a Windows PE binary. By
default, the file headers are not loaded into the database when it is first cre-
ated; however, file headers can be loaded if you select the Manual load
option during initial database creation. Loading the file headers ensures
only that the data bytes associated with those headers will be present in the
database. In most cases, the headers will not be formatted in any way because
typical programs make no direct reference to their own file headers. Thus
there is no reason for the analyzer to apply structure templates to the headers.

After conducting some research on the format of a PE binary, you
will learn that a PE file begins with an MS-DOS header structure named
IMAGE_DOS_HEADER. Further, data contained within the IMAGE DOS HEADER
points to the location of an IMAGE_NT HEADERS structure, which details the
memory layout of the PE binary. Choosing to load the PE headers, you
might see something similar to the following unformatted data disassem-
bly. Readers familiar with the PE file structure may recognize the familiar
MS-DOS magic value Mz as the first two bytes in the file.

HEADER:00400000 _ ImageBase db 4Dh ; M
HEADER: 00400001 db 5Ah ; Z
HEADER : 00400002 db 9oh ; E
HEADER : 00400003 db 0
HEADER : 00400004 db 3
HEADER: 00400005 db 0
HEADER: 00400006 db 0
HEADER : 00400007 db 0
HEADER : 00400008 db 4
HEADER : 00400009 db 0
HEADER: 0040000A db 0
HEADER : 00400008 db 0
HEADER : 0040000C db OFFh
HEADER : 0040000D db OFFh
HEADER : 0040000E db 0
HEADER: 0040000F db 0

As this file is formatted here, you would need some PE file reference doc-
umentation to help you make sense of each of the data bytes. By using struc-
ture templates, IDA can format these bytes as an IMAGE_DOS_HEADER, making the
data far more useful. The first step is to add the standard IMAGE_DOS HEADER as
detailed above (you could add the IMAGE_NT_HEADERS structure while you are at
it). The second step is to convert the bytes beginning at _ ImageBase into an
IMAGE_DOS_HEADER structure using Edit » Struct Var (ALT-Q). This results in the
reformatted display shown here:

HEADER:00400000 _ ImageBase IMAGE DOS HEADER <5A4Dh, 90h, 3, 0, 4, 0, OFFFFh, 0, 0B8h, \
0, 0, 0, 40h, 0, 0, 0, 0, 0, 80h>

HEADER : 00400000
HEADER:00400040 db OEh

As you can see, the first 64 (0x40) bytes in the file have been collapsed
into a single data structure, with the type noted in the disassembly. Unless
you possess encyclopedic knowledge of this particular structure, though,
the meaning of each field may remain somewhat cryptic. We can take this
operation one step further, however, by expanding the structure. When a
structured data item is expanded, each field is annotated with its corre-
sponding field name from the structure definition. Collapsed structures
can be expanded using the plus key (+) on the numeric keypad. The final
version of the listing follows:

HEADER:00400000 __ ImageBase dw 5A4Dh ; e_magic
HEADER : 00400000 dw 90h ; e_cblp
HEADER :00400000 dw 3 ; ecp
HEADER:00400000 dw 0 ; e_crlc
HEADER :00400000 dw 4 ; e_cparhdr
HEADER :00400000 dw 0 ; e_minalloc
HEADER : 00400000 dw OFFFFh ; e _maxalloc
HEADER : 00400000 dw 0 ; €.ss
HEADER:00400000 dw 0B8h ; e_sp
HEADER:00400000 dw 0 ; e_csum
HEADER : 00400000 dw 0 ; e ip

Datatypes and Data Structures 153

HEADER:00400000 dw 0 ; e._cs

HEADER : 00400000 dw 40h ; e_lfarlc
HEADER : 00400000 dw 0 ; e_ovno
HEADER : 00400000 dw 4 dup(0) ; e_res
HEADER:00400000 dw 0 ; e_oemid
HEADER :00400000 dw 0 ; e_oeminfo
HEADER : 00400000 dw 0Ah dup(0) ; e_res2
HEADER:00400000 Odd 80h ; e_lfanew
HEADER : 00400040 db OEh

Unfortunately, the fields of IMAGE_DOS_HEADER do not possess particularly
meaningful names, so we may need to consult a PE file reference to remind
ourselves that the e_1fanew field @ indicates the file offset at which an
IMAGE_NT_HEADERS structure can be found. Applying all of the previous steps
to create an IMAGE_NT HEADER at address oo400080 (0x80 bytes into the database)
yields the nicely formatted structure shown in part here:

HEADER : 00400080 dd 4550h ; Signature

HEADER : 00400080 dw 14Ch ; FileHeader.Machine

HEADER : 00400080 Odw 5 ; FileHeader.NumberOfSections

HEADER :00400080 dd 4789ADF1h ; FileHeader.TimeDateStamp
HEADER:00400080 dd 1400h ; FileHeader.PointerToSymbolTable
HEADER:00400080 dd 14Eh ; FileHeader.NumberOfSymbols

HEADER :00400080 dw OEOh ; FileHeader.SizeOfOptionalHeader
HEADER : 00400080 dw 307h ; FileHeader.Characteristics
HEADER:00400080 dw 10Bh ; OptionalHeader.Magic

HEADER :00400080 db 2 ; OptionalHeader.MajorLinkerVersion
HEADER:00400080 db 38h ; OptionalHeader.MinorLinkerVersion
HEADER : 00400080 dd 8ooh ; OptionalHeader.SizeOfCode
HEADER:00400080 dd 8ooh ; OptionalHeader.SizeOfInitializedData
HEADER :00400080 dd 200h ; OptionalHeader.SizeOfUninitializedData
HEADER:00400080 dd 1000h ; OptionalHeader.AddressOfEntryPoint
HEADER : 00400080 dd 1000h ; OptionalHeader.BaseOfCode
HEADER:00400080 dd 2000h ; OptionalHeader.BaseOfData
HEADER:00400080 @dd 400000h ; OptionalHeader.ImageBase

Fortunately for us, the field names in this case are somewhat more mean-
ingful. We quickly see that the file consists of five sections @ and should be
loaded into memory at virtual address oo400000 ®. Expanded structures can
be returned to their collapsed state using the minus key (=) on the keypad.

IDA TIL Files

All datatype and function prototype information in IDA is stored in TIL files.
IDA ships with type library information for many major compilers and APIs

stored in the <IDADIR>/til directory. The Types window (View » Open sub-

view » Type Libraries) lists currently loaded .til files and is used to load addi-
tional il files that you may wish to use. Type libraries are loaded automatically
based on attributes of the binary discovered during the analysis phase. Under
ideal circumstances, most users will never need to deal with til files directly.

154 Chapter 8

Loading New TIL Files

In some cases, IDA may fail to detect that a specific compiler was used to
build a binary, perhaps because the binary has undergone some form of
obfuscation. When this happens, you may load additional .til files by pressing
the INSERT key within the Types window and selecting the desired .til files.
When a new .til file is loaded, all structure definitions contained in the file
are added to the list of standard structures, and type information is applied
for any functions within the binary that have matching prototypes in the
newly loaded .til file. In other words, when IDA gains new knowledge about
the nature of a function, it automatically applies that new knowledge.

Sharing TIL Files

IDA also makes use of .til files to store any custom structure definitions that
you create manually in the Structures window or through parsing C header
files. Such structures are stored in a dedicated .til file associated with the data-
base in which they were created. This file shares the base name of the database
and has a .til extension. For a database named some_file.idb, the associated type
library file would be some_file.til. Under normal circumstances you will never
see this file unless you happen to have the database open in IDA. Recall that
an .idb file is actually an archive file (similar to a .tar file) used to hold the com-
ponents of a database when they are not in use. When a database is opened,
the component files (the .til file being one of them) are extracted as working
files for IDA.

A discussion regarding how to share .til files across databases can be
found at http://www.hex-rays.com/forum/viewtopic.php?f=6&t=986 .* Two tech-
niques are mentioned. The first technique is somewhat unofficial and involves
copying the .til file from an open database into your IDA til directory from
which it can be opened, in any other database, via the Types window. A more
official way to extract the custom type information from a database is to gen-
erate an IDC script that can be used to re-create the custom structures in any
other database. Such a script can be generated using the File » Produce File »
Dump Typeinfo to IDC File command. However, unlike the first technique,
this technique dumps only the structures listed in the Structures window,
which may not include all structures parsed from C header files (whereas the
il file-copying technique will).

Hex-Rays also provides a standalone tool, named tilib, for creating .til
files outside of IDA. The utility is available as a .zip file for registered users via
the Hex-Rays IDA download page. Installation is as simple as extracting the
.zip file contents into <IDADIR>. The tilib utility may be used to list the con-
tents of existing .til files or create new .til files by parsing C (not C++) header
files. The following command would list the contents of the Visual Studio 6
type library:

C:\Program Files\IdaPro>tilib -1 til\pc\vcéwin.til

4. This link is accessible to registered users only.

Datatypes and Data Structures 155

156

Creating a new .til file involves naming the header file to be parsed and
the .til file to be created. Command line options allow you to specify addi-
tional include file directories or, alternatively, previously parsed .til files in
order to resolve any dependencies contained in your header file. The follow-
ing command creates a new .til file containing the declaration of ch8_struct.
The resulting .til file must be moved into <IDADIR>/til before IDA can make
use of it.

C:\Program Files\IdaPro>tilib -c -hch8_struct.h ch8.til

The tilib utility contains a substantial number of additional capabilities,
some of which are detailed in the README file included with the tilib distri-
bution, and others of which are briefly detailed by running tilib with no argu-
ments. Prior to version 6.1, tilib is distributed only as a Windows executable;
however, the .til files that it generates are compatible with all versions of IDA.

C++ Reversing Primer

Chapter 8

C++ classes are the object-oriented extensions of C structs, so it is somewhat
logical to wrap up our discussion of data structures with a review of the fea-
tures of compiled C++ code. C++ is sufficiently complex that detailed cover-
age of the topic is beyond the scope of this book. Here we attempt to cover
the highlights and a few of the differences between Microsoft’s Visual C++
and GNU’s g++.

An important point to remember is that a solid, fundamental under-
standing of the C++ language will assist you greatly in understanding com-
piled C++. Object-oriented concepts such as inheritance and polymorphism
are difficult enough to learn well at the source level. Attempting to dive into
these concepts at the assembly level without understanding them at the
source level will certainly be an exercise in frustration.

The this Pointer

The this pointer is a pointer available in all nonstatic C++ member functions.
Whenever such a function is called, this is initialized to point to the object
used to invoke the function. Consider the following functions calls:

//object1, object2, and *p_obj are all the same type.
object1.member func();
object2.member func();
p_obj->member_func();

In the three calls to member func, this takes on the values &object1,
gobject2, and p_obj, respectively. It is easiest to view this as a hidden first
parameter passed in to all nonstatic member functions. As discussed in Chap-
ter 6, Microsoft Visual C++ utilizes the thiscall calling convention and passes
this in the ECX register. The GNU g++ compiler treats this exactly as if it was

the first (leftmost) parameter to nonstatic member functions and pushes the
address of the object used to invoke the function as the topmost item on the
stack prior to calling the function.

From a reverse engineering point of view, the moving of an address into
the ECX register immediately prior to a function call is a probable indicator
of two things. First, the file was compiled using Visual C++. Second, the func-
tion is a member function. When the same address is passed to two or more
functions, we can conclude that those functions all belong to the same class
hierarchy.

Within a function, the use of ECX prior to initializing it implies that the
caller must have initialized ECX and is a possible sign that the function is a
member function (though the function may simply use the fastcall calling
convention). Further, when a member function is observed to pass this to
additional functions, those functions can be inferred to be members of the
same class as well.

For code compiled using g++, calls to member functions stand out some-
what less. However, any function that does not take a pointer as its first argu-
ment can certainly be ruled out as a member function.

Virtual Functions and Vtables

Virtual functions provide the means for polymorphic behavior in C++ pro-
grams. For each class (or subclass through inheritance) that contains virtual
functions, the compiler generates a table containing pointers to each virtual
function in the class. Such tables are called vtables. Furthermore, every class
that contains virtual functions is given an additional data member whose pur-
pose is to point to the appropriate vtable at runtime. This member is typically
referred to as a vtable pointer and is allocated as the first data member within
the class. When an object is created at runtime, its vtable pointer is set to
point at the appropriate vtable. When that object invokes a virtual function,
the correct function is selected by performing a lookup in the object’s vtable.
Thus, vtables are the underlying mechanism that facilitates runtime resolu-
tion of calls to virtual functions.

A few examples may help to clarify the use of vtables. Consider the fol-
lowing C++ class definitions:

class BaseClass {
public:
BaseClass();
virtual void vfunci() = 0;
virtual void vfunc2();
virtual void vfunc3();
virtual void vfunca();
private:
int x;
int y;
b

Datatypes and Data Structures 157

158

Chapter 8

class SubClass : public BaseClass {
public:

SubClass();

virtual void vfunci();

virtual void vfunc3();

virtual void vfunc5();
private:

int z;

};

In this case, SubClass inherits from BaseClass. BaseClass contains four vir-
tual functions, while SubClass contains five (four from BaseClass plus the new
vfuncs). Within BaseClass, vfunci is a pure virtual function by virtue of the use of
= o in its declaration. Pure virtual functions have no implementation in their
declaring class and must be overridden in a subclass before the class is consid-
ered concrete. In other words, there is no function named BaseClass: :vfuncz,
and until a subclass provides an implementation, no objects can be instanti-
ated. SubClass provides such an implementation, so SubClass objects can be
created.

At first glance BaseClass appears to contain two data members and Sub-
Class three data members. Recall, however, that any class that contains virtual
functions, either explicitly or because they are inherited, also contains a vtable
pointer. As a result, instantiated BaseClass objects actually have three data
members, while instantiated SubClass objects have four data members. In
each case, the first data member is the vtable pointer. Within SubClass, the
vtable pointer is actually inherited from BaseClass rather than being intro-
duced specifically for SubClass. Figure 8-14 shows a simplified memory layout
in which a single SubClass object has been dynamically allocated. During the
creation of the object, the compiler ensures that the new object’s vtable
pointer points to the correct vtable (SubClass’s in this case).

BaseClass vtable

&purecall

BaseClass *bc = new SubClass(); &BaseClass: :vfunc2

E_ 8BaseClass: :vfunc3

&BaseClass: :vfunca

SubClass vtable

p_vftable @ &SubClass: :vfunci
X &BaseClass: :vfunc2
Y &SubClass: :vfunc3
z &BaseClass: :vfunc4
heap data &SubClass: :vfuncs

read-only data
(.rdata/.rodata)

Figure 8-14: A simple vtable layout

Note that the vtable for SubClass contains two pointers to functions
belonging to BaseClass (BaseClass: :vfunc2 and BaseClass: :vfunc4). This is
because SubClass does not override either of these functions and instead
inherits them from BaseClass. Also shown is the typical handling of pure vir-
tual function entries. Because there is no implementation for the pure virtual
function BaseClass: :vfunc1, No address is available to store in the BaseClass
vtable slot for vfunc1. In such cases, compilers insert the address of an error-
handling function, often dubbed purecall, which in theory should never be
called but which will usually abort the program in the event that it somehow
is called.

One consequence of the presence of a vtable pointer is that you must
account for it when you manipulate the class within IDA. Recall that C++
classes are an extension of C structures. Therefore, you may choose to make
use of IDA’s structure definition features to define the layout of C++ classes.
In the case of classes that contain virtual functions, you must remember to
include a vtable pointer as the first field within the class. Vtable pointers
must also be accounted for in the total size of an object. This is most appar-
ent when observing the dynamic allocation of an object using the new® opera-
tor, where the size value passed to new includes the space consumed by all
explicitly declared fields in the class (and any superclasses) as well as any
space required for a vtable pointer.

In the following example a SubClass object is created dynamically, and
its address saved in a BaseClass pointer. The pointer is then passed to a func-
tion (call _vfunc), which uses the pointer to call vfuncs.

void call vfunc(BaseClass *b) {
b->vfunc3();
}

int main() {
BaseClass *bc = new SubClass();
call vfunc(bc);

}

Since vfunc3 is a virtual function, the compiler must ensure that
SubClass: :vfunc3 is called in this case because the pointer points to a Sub-
Class object. The following disassembled version of call vfunc demonstrates
how the virtual function call is resolved:

.text:004010A0 call_vfunc proc near
.text:004010A0

.text:004010A0 b = dword ptr 8
.text:004010A0

.text:004010A0 push ebp
.text:004010A1 mov ebp, esp
.text:004010A3 mov eax, [ebp+b]
.text:004010A6 Omov edx, [eax]

5. The new operator is used for dynamic memory allocation in C++ in much the same way that
malloc is used in C (though new is built into the C++ language, where malloc is merely a standard
library function).

Datatypes and Data Structures 159

160

Chapter 8

.text:004010A8 mov ecx, [ebp+b]

.text:004010AB Bmov eax, [edx+8]
.text:004010AE Ocall eax
.text:004010B0 pop ebp
.text:004010B1 retn

.text:004010B1 call_vfunc endp

The vtable pointer is read from the structure at @ and saved in the EDX
register. Since the parameter b points to a SubClass object, this will be the
address of SubClass’s vtable. At @, the vtable is indexed to read the third
pointer (the address of SubClass: :vfunc3 in this case) into the EAX register.
Finally, at ®, the virtual function is called.

Note that the vtable indexing operation at ® looks very much like a
structure reference operation. In fact, it is no different, and it is possible to
define a structure to represent the layout of a class’s vtable and then use the
defined structure to make the disassembly more readable, as shown here:

00000000 SubClass_vtable struc ; (sizeof=0x14)

00000000 vfuncl dd ?
00000004 vfunc2 dd ?
00000008 vfunc3 dd ?
0000000C vfunc4 dd ?
00000010 vfuncs dd ?

00000014 SubClass_vtable ends

This structure allows the vtable reference operation to be reformatted as
follows:

.text:004010AB mov eax, [edx+SubClass_vtable.vfunc3]

The Object Life Cycle

An understanding of the mechanism by which objects are created and
destroyed can help to reveal object hierarchies and nested object relation-
ships as well as quickly identify class constructor and destructor functions.®
For global and statically allocated objects, constructors are called during
program startup and prior to entry into the main function. Constructors for
stack-allocated objects are invoked at the point the object comes into scope
within the function in which it is declared. In many cases, this will be immedi-
ately upon entry to the function in which it is declared. However, when an
object is declared within a block statement, its constructor is not invoked
until that block is entered, if it is entered at all. When an object is allocated
dynamically in the program heap, its creation is a two-step process. In the
first step, the new operator is invoked to allocate the object’s memory. In the
second step, the constructor is invoked to initialize the object. A major differ-
ence between Microsoft’s Visual C++ and GNU’s g++ is that Visual C++ ensures
that the result of new is not null prior to invoking the constructor.
6. A class constructor function is an initialization function that is invoked automatically when an

object is created. A corresponding destructor is optional and would be called when an object is no
longer in scope or similar.

When a constructor executes, the following sequence of actions takes
place:

If the class has a superclass, the superclass constructor is invoked.

If the class has any virtual functions, the vtable pointer is initialized to
point to the class’s vtable. Note that this may overwrite a vtable pointer
that was initialized in the superclass, which is exactly the desired behavior.

3. If the class has any data members that are themselves objects, then the
constructor for each such data member is invoked.

4. Finally, the code-specific constructor is executed. This is the code repre-
senting the C++ behavior of the constructor specified by the programmer.

Constructors do not specify a return type; however, constructors gener-
ated by Microsoft Visual C++ actually return this in the EAX register. Regard-
less, this is a Visual C++ implementation detail and does not permit C++
programmers to access the returned value.

Destructors are called in essentially the reverse order. For global and static
objects, destructors are called by cleanup code that is executed after the main
function terminates. Destructors for stack-allocated objects are invoked as the
objects go out of scope. Destructors for heap-allocated objects are invoked
via the delete operator immediately before the memory allocated to the
object is released.

The actions performed by destructors mimic those performed by con-
structors, with the exception that they are performed in roughly reverse
order.

1. If the class has any virtual functions, the vtable pointer for the object is
restored to point to the vtable for the associated class. This is required in
case a subclass had overwritten the vtable pointer as part of its creation
process.

2. The programmer-specified code for the destructor executes.

3. If the class has any data members that are themselves objects, the
destructor for each such member is executed.

4. Finally, if the object has a superclass, the superclass destructor is called.

By understanding when superclass constructors and destructors are
called, it is possible to trace an object’s inheritance hierarchy through the
chain of calls to its related superclass functions. A final point regarding vta-
bles relates to how they are referenced within programs. There are only two
circumstances in which a class’s vtable is referenced directly, within the class
constructor(s) and destructor. When you locate a vtable, you can utilize IDA’s
data cross-referencing capabilities (see Chapter 9) to quickly locate all con-
structors and destructors for the associated class.

Datatypes and Data Structures 161

162

Chapter 8

Name Mangling

Also called name decoration, name mangling is the mechanism C++ compilers
use to distinguish among overloaded’ versions of a function. In order to
generate unique names for overloaded functions, compilers decorate the
function name with additional characters used to encode various pieces of
information about the function. Encoded information typically describes the
return type of the function, the class to which the function belongs, and the
parameter sequence (type and order) required to call the function.

Name mangling is a compiler implementation detail for C++ programs
and as such is not part of the C++ language specification. Not unexpectedly,
compiler vendors have developed their own, often-incompatible conventions
for name mangling. Fortunately, IDA understands the name-mangling con-

ventions employed by Microsoft Visual C++ and GNU g++ as well as a few
other compilers. By default, when a

21| mangled name is encountered within
Show demangled C++ names as: a program, IDA displays the demangled
o CrirEns equivalent as a comment anywhere the
£ Heanes name appears in the disassembly. IDA’s
" Don'tdemangle name-demangling options are selected
using the dialog shown in Figure 8-15,
which is accessed using Options »
Demangled Names.
The three principal options control
Setup long names | whether demangled names are displayed as
comments, whether the names themselves
ok | _camcel | hep are demangled, or whether no demangling
is performed at all. Displaying demangled
Figure 8-15: Demangled name names as comments results in a display sim-
display options ilar to the following:

.text:00401050 ; protected: _ thiscall SubClass::SubClass(void)

O text:00401050 ??0SubClass@@IAE@XZ proc near

.text:004010DC @call ??20SubClass@@IAE@XZ ; SubClass::SubClass(void)

Likewise, displaying demangled names as names results in the following:

O .text:00401050 protected: thiscall SubClass::SubClass(void) proc near

.text:004010DC Bcall SubClass: :SubClass(void)

where @ is representative of the first line of a disassembled function and @ is
representative of a call to that function.

7. In C++, function overloading allows programmers to use the same name for several functions.
The only requirement is that each version of an overloaded function must differ from every other
version in the sequence and/or quantity of parameter types that the function receives. In other
words, each function prototype must be unique.

The Assume GCC v3.x names checkbox is used to distinguish between
the mangling scheme used in g++ version 2.9.x and that used in g++ versions
3.x and later. Under normal circumstances, IDA should automatically detect
the naming conventions in use in g++-compiled code. The Setup short
names and Setup long names buttons offer fine-grained control over the for-
matting of demangled names with a substantial number of options that are
documented in IDA’s help system.

Because mangled names carry so much information regarding the signa-
ture of each function, they reduce the time required to understand the num-
ber and types of parameters passed into a function. When mangled names
are available within a binary, IDA’s demangling capability instantly reveals
the parameter types and return types for all functions whose names are man-
gled. In contrast, for any function that does not utilize a mangled name, you
must conduct time-consuming analysis of the data flowing into and out of the
function in order to determine the signature of the function.

Runtime Type Identification

C++ provides operators that allow for runtime determination (typeid) and
checking (dynamic_cast) of an object’s datatype. To facilitate these opera-
tions, C++ compilers must embed type information within a program binary
and implement procedures whereby the type of a polymorphic object can be
determined with certainty regardless of the type of the pointer that may be
dereferenced to access the object. Unfortunately, as with name mangling,
Runtime Type Identification (RTTI) is a compiler implementation detail
rather than a language issue, and there is no standard means by which com-
pilers implement RTTI capabilities.

We will take brief look at the similarities and differences between the
RTTI implementations of Microsoft Visual C++ and GNU g++. Specifically,
the only details presented here concern how to locate RTTI information
and, from there, how to learn the name of class to which that information
pertains. Readers desiring more detailed discussion of Microsoft’s RTTI
implementation should consult the references listed at the end of this chap-
ter. In particular, the references detail how to traverse a class’s inheritance
hierarchy, including how to trace that hierarchy when multiple inheritance
is being used.

Consider the following simple program, which makes use of poly-
morphism:

class abstract_class {
public:
virtual int vfunc() = 0;

b

class concrete_class : public abstract_class {
public:

concrete class();

int vfunc();

};

Datatypes and Data Structures 163

164

Chapter 8

void print_type(abstract_class *p) {
cout << typeid(*p).name() << endl;
}

int main() {
abstract_class *sc = new concrete class();
print_type(sc);

The print_type function must correctly print the type of the object
being pointed to by the pointer p. In this case, it is trivial to realize that
“concrete_class” must be printed based on the fact that a concrete class
object is created in the main function. The question we answer here is: How
does print_type, and more specifically typeid, know what type of object p is
pointing to?

The answer is surprisingly simple. Since every polymorphic object con-
tains a pointer to a vtable, compilers leverage that fact by co-locating class-
type information with the class vtable. Specifically, the compiler places a
pointer immediately prior to the class vtable. This pointer points to a struc-
ture that contains information used to determine the name of the class that
owns the vtable. In g++ code, this pointer points to a type_info structure,
which contains a pointer to the name of the class. In Visual C++, the pointer
points to a Microsoft RTTICompleteObjectLocator Structure, which in turn con-
tains a pointer to a TypeDescriptor structure. The TypeDescriptor structure
contains a character array that specifies the name of the polymorphic class.

It is important to realize that RTTI information is required only in C++
programs that use the typeid or dynamic_cast operator. Most compilers pro-
vide options to disable the generation of RTT]I in binaries that do not require
it; therefore, you should not be surprised if RTTI information ever happens
to be missing.

Inheritance Relationships

If you dig deep enough into some RTTI implementations, you will find that
it is possible to unravel inheritance relationships, though you must under-
stand the compiler’s particular implementation of RTTI in order to do so.
Also, RTTI may not be present when a program does not utilize the typeid or
dynamic_cast operators. Lacking RTTI information, what techniques can be
employed to determine inheritance relationships among C++ classes?

The simplest method of determining an inheritance hierarchy is to
observe the chain of calls to superclass constructors that are called when an
object is created. The single biggest hindrance to this technique is the use
of inline® constructors, the use of which makes it impossible to understand
that a superclass constructor has in fact been called.

8. In C/C++ programs a function declared as inline is treated as a macro by the compiler, and
the code for the function is expanded in place of an explicit function call. Since the presence of
an assembly language call statement is a dead giveaway that a function is being called, the use of
inline functions tends to hide the fact that a function is being used.

An alternative means for determining inheritance relationships involves
the analysis and comparison of vtables. For example, in comparing the vta-
bles shown in Figure 8-14, we note that the vtable for SubClass contains two
of the same pointers that appear in the vtable for BaseClass. We can easily
conclude that BaseClass and SubClass must be related in some way, but
which one is the base class and which one is the subclass? In such cases we
can apply the following guidelines, singly or in combination, in an attempt
to understand the nature of their relationship.

e When two vtables contain the same number of entries, the two corre-
sponding classes may be involved in an inheritance relationship.

e When the vtable for class X contains more entries than the vtable for
class Y, class X may be a subclass of class Y.

o When the vtable for class X contains entries that are also found in the
vtable for class Y, then one of the following relationships must exist: X is
asubclass of Y, Y is a subclass of X, or X and Y are both subclasses of a
common superclass Z.

o When the vtable for class X contains entries that are also found in the
vtable for class Y and the vtable for class X contains at least one purecall
entry that is not also present in the corresponding vtable entry for class
Y, then class Y is a subclass of class X.

While the list above is by no means all-inclusive, we can use these
guidelines to deduce the relationship between BaseClass and SubClass
in Figure 8-14. In this case, the last three rules all apply, but the last rule
specifically leads us to conclude, based on vtable analysis alone, that SubClass
inherits from BaseClass.

C++ Reverse Engineering References

For further reading on the topic of reverse engineering compiled C++, check
out these excellent references:

¢ lgor Skochinsky’s article “Reversing Microsoft Visual C++ Part I1: Classes,
Methods and RTTI,” available at http://www.openrce.org/articles/full_view/23.

e Paul Vincent Sabanal and Mark Vincent Yason’s paper “Reversing C++,”

available at http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/
Paper/bh-dc-07-Sabanal_Yason-WP.pdf.

While many of the details in each of these articles apply specifically to
programs compiled using Microsoft Visual C++, many of the concepts apply
equally to programs compiled using other C++ compilers.

Datatypes and Data Structures 165

166

Summary

Chapter 8

You can expect to encounter complex datatypes in all but the most trivial
programs. Understanding how data within complex data structures is accessed
and knowing how to recognize clues to the layout of those complex data
structures is an essential reverse engineering skill. IDA provides a wide vari-
ety of features designed specifically to address the need to deal with complex
data structures. Familiarity with these features will greatly enhance your abil-
ity to comprehend what data is being manipulated and spend more time
understanding how and why that data is being manipulated.

In the next chapter, we round out our discussion of IDA’s basic capabili-
ties with a discussion of cross-references and graphing before moving on to
the more advanced aspects of IDA usage that set it apart from other reverse
engineering tools.

CROSS-REFERENCES
AND GRAPHING

Some of the more common questions asked
while reverse engineering a binary are along

the lines of “Where is this function called from?”
and “What functions access this data?” These and other
similar questions seek to catalog the references to and
from various resources in a program. Two examples
serve to show the usefulness of such questions.

Consider the case in which you have located a function containing a stack-
allocated buffer that can be overflowed, possibly leading to exploitation of
the program. Since the function may be buried deep within a complex appli-
cation, your next step might be to determine exactly how the function can be
reached. The function is useless to you unless you can get it to execute. This
leads to the question “What functions call this vulnerable function?” as well
as additional questions regarding the nature of the data that those functions

168

may pass to the vulnerable function. This line of reasoning must continue as
you work your way back up potential call chains to find one that you can
influence to properly exploit the overflow that you have discovered.

In another case, consider a binary that contains a large number of ASCII
strings, at least one of which you find suspicious, such as “Executing Denial
of Service attack!” Does the presence of this string indicate that the binary
actually performs a Denial of Service attack? No, it simply indicates that the
binary happens to contain that particular ASCII sequence. You might infer
that the message is displayed somehow just prior to launching an attack; how-
ever, you need to find the related code in order to verify your suspicions.
Here the answer to the question “Where is this string referenced?” would
help you to quickly track down the program location(s) that make use of the
string. From there, perhaps it can assist you in locating any actual Denial of
Service attack code.

IDA helps to answer these types of questions through its extensive cross-
referencing features. IDA provides a number of mechanisms for displaying
and accessing cross-reference data, including graph-generation capabilities
that provide a highly visual representation of the relationships between code
and data. In this chapter we discuss the types of cross-reference information
that IDA makes available, the tools for accessing cross-reference data, and
how to interpret that data.

Cross-References

Chapter 9

We begin our discussion by noting that cross-references within IDA are often
referred to simply as xrefs. Within this text, we will use xref only where it is
used to refer to the content of an IDA menu item or dialog. In all other cases
we will stick to the term cross-reference.

There are two basic categories of cross-references in IDA: code cross-ref-
erences and data cross-references. Within each category, we will detail several
different types of cross-references. Associated with each cross-reference is
the notion of a direction. All cross-references are made from one address
to another address. The from and to addresses may be either code or data
addresses. If you are familiar with graph theory, you may choose to think of
addresses as nodes in a directed graph and cross-references as the edges in
that graph. Figure 9-1 provides a quick refresher on graph terminology. In
this simple graph, three nodes ® are connected by two directed edges @.

.text:080489DA jz error @

e

.text:080489DC push 0 @ .text:08048A18 error: mov eax, edx @

Figure 9-1: Basic graph components

Note that nodes may also be referred to as vertices. Directed edges are
drawn using arrows to indicate the allowed direction of travel across the

edge. In Figure 9-1, it is possible to travel from the upper node to either of
the lower nodes, but it is not possible to travel from either of the lower nodes
to the upper node.

Code cross-references are a very important concept, as they facilitate
IDA’s generation of control flow graphs and function call graphs, each of which
we discuss later in the chapter.

Before we dive into the details of cross-references, it is useful to under-
stand how IDA displays cross-reference information in a disassembly listing.
Figure 9-2 shows the header line for a disassembled function (sub_401000)
containing a cross-reference as a regular comment (right side of the figure).

.text:00401000 ; Attributes: bp-based frame

.text:00401000

.text:00401000 sub_ 401000 proc¢ near ; CODE XREF: main+2A1p
.text: 00401000

Figure 9-2: A basic cross-reference

The text coDE XREF indicates that this is a code cross-reference rather than
a data cross-reference (DATA XREF). An address follows, main+2A in this case,
indicating the address from which the cross-reference originates. Note that
this is a more descriptive form of address than .text:0040154A, for example.
While both forms represent the same program location, the format used in
the cross-reference offers the additional information that the cross-reference
is being made from within the function named _main, specifically Ox2A (42)
bytes into the main function. An up or down arrow will always follow the
address, indicating the relative direction to the referencing location. In Fig-
ure 9-2, the down arrow indicates that main+2A lies at a higher address than
sub_401000, and thus you would need to scroll down to reach it. Similarly, an
up arrow indicates that a referencing location lies at a lower memory address,
requiring that you scroll up to reach it. Finally, every cross-reference com-
ment contains a single-character suffix to identify the type of cross-reference
that is being made. Each suffix is described later as we detail all of IDA’s
cross-reference types.

Code Cross-References

A code cross-reference is used to indicate that an instruction transfers or
may transfer control to another instruction. The manner in which instruc-
tions transfer control is referred to as a flow within IDA. IDA distinguishes
among three basic flow types: ordinary, jump, and call. Jump and call flows
are further divided according to whether the target address is a near or far
address. Far addresses are encountered only in binaries that make use of seg-
mented addresses. In the discussion that follows, we make use of the disas-
sembled version of the following program:

int read_it; //integer variable read in main

int write_it; //integer variable written 3 times in main

int ref_it; //integer variable whose address is taken in main
void callflow() {} //function called twice from main

Cross-References and Graphing 169

int main() {

int *p = &ref it; //results in an "offset" style data reference

*p = read_it; //results in a "read" style data reference

write_it = *p; //results in a "write" style data reference

callflow(); //results in a "call" style code reference

if (read_it == 3) { //results in "jump" style code reference
write_it = 2; //results in a "write" style data reference

}

else { //results in an "jump" style code reference
write it = 1; //results in a "write" style data reference

callflow(); //results in an "call" style code reference

The program contains operations that will exercise all of IDA’s cross-
referencing features, as noted in the comment text.

An ordinary flow is the simplest flow type, and it represents sequential
flow from one instruction to another. This is the default execution flow for
all nonbranching instructions such as AbD. There are no special display indi-
cators for ordinary flows other than the order in which instructions are listed
in the disassembly. If instruction A has an ordinary flow to instruction B, then
instruction B will immediately follow instruction A in the disassembly listing.
In the following listing, every instruction other than @ and @ has an associ-
ated ordinary flow to its immediate successor:

.text:00401010 _main proc near

.text:00401010

.text:00401010 p = dword ptr -4
.text:00401010

.text:00401010 push ebp
.text:00401011 mov ebp, esp
.text:00401013 push ecx
.text:00401014 ©mov [ebp+p], offset ref it
.text:0040101B mov eax, [ebp+p]
.text:0040101E @mov ecx, read_it
.text:00401024 mov [eax], ecx
.text:00401026 mov edx, [ebp+p]
.text:00401029 mov eax, [edx]
.text:0040102B Bmov write it, eax
.text:00401030 Ocall callflow
.text:00401035 @cmp read_it, 3
.text:0040103C jnz short loc_40104A
.text:0040103E Bmov write it, 2
.text:00401048 Ojmp short loc_401054

© . text:0040104A 5 -------mmmm o m oo oo
.text:0040104A

.text:0040104A loc_40104A: ®; CODE XREF: main+2CNj
.text:0040104A Bmov write it, 1

.text:00401054

.text:00401054 loc_401054: ®; CODE XREF: _main+381Nj
.text:00401054 Ocall callflow

.text:00401059 Xor eax, eax

170 Chapter 9

.text:0040105B mov esp, ebp

.text:0040105D pop ebp
.text:0040105E Bretn
.text:0040105E _main endp

Listing 9-1: Cross-reference sources and targets

Instructions used to invoke functions, such as the x86 call instructions at
©, are assigned a call flow, indicating transfer of control to the target func-
tion. In most cases, an ordinary flow is also assigned to call instructions, as
most functions return to the location that follows the call. If IDA believes
that a function does not return (as determined during the analysis phase),
then calls to that function will not have an ordinary flow assigned. Call flows
are noted by the display of cross-references at the target function (the desti-
nation address of the flow). The resulting disassembly of the callflow func-
tion is shown here:

.text:00401000 callflow proc near ; CODE XREF: main+20\/p
.text:00401000 ; _main:loc_401054/p
.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 pop ebp

.text:00401004 retn

.text:00401004 callflow endp

In this example, two cross-references are displayed at the address of
callflow to indicate that the function is called twice. The address displayed
in the cross-references is displayed as an offset into the calling function
unless the calling address has an associated name, in which case the name is
used. Both forms of addresses are used in the cross-references shown here.
Cross-references resulting from function calls are distinguished through use
of the p suffix (think P for Procedure).

A jump flow is assigned to each unconditional and conditional branch
instruction. Conditional branches are also assigned ordinary flows to account
for control flow when the branch is not taken. Unconditional branches have
no associated ordinary flow because the branch is always taken in such cases.
The dashed line break at @ is a display device used to indicate that an ordi-
nary flow does not exist between two adjacent instructions. Jump flows are
associated with jump-style cross-references displayed at the target of the jump,
as shown at @. As with call-style cross-references, jump cross-references dis-
play the address of the referring location (the source of the jump). Jump
cross-references are distinguished by the use of a j suffix (think J for Jump).

Data Cross-References

Data cross-references are used to track the manner in which data is accessed
within a binary. Data cross-references can be associated with any byte in an
IDA database that is associated with a virtual address (in other words, data
cross-references are never associated with stack variables). The three most
commonly encountered types of data cross-references are used to indicate

Cross-References and Graphing 171

172

Chapter 9

when a location is being read, when a location is being written, and when the
address of a location is being taken. The global variables associated with the
previous example program are shown here, as they provide several examples
of data cross-references.

.data:0040B720 read_it dd ? ; DATA XREF: main+E/Pr
.data:0040B720 ; _main+25/r
.data:0040B724 write_it dd ? ; DATA XREF: main+1Bw
.data:0040B724 ®; main+2EP™w ...
.data:0040B728 ref_it db 7 ; DATA XREF: main+4o
.data:0040B729 db ?;

.data:0040B72A db ?

.data:0040B728B db ?;

A read cross-reference is used to indicate that the contents of a memory loca-
tion are being accessed. Read cross-references can originate only from an
instruction address but may refer to any program location. The global vari-
able read_it is read at locations marked @ in Listing 9-1. The associated cross-
reference comments shown in this listing indicate exactly which locations in
main are referencing read it and are recognizable as read cross-references
based on the use of the r suffix. The first read performed on read_it is a 32-
bit read into the ECX register, which leads IDA to format read it as a dword
(dd). In general IDA takes as many cues as it possibly can in order to deter-
mine the size and/or type of variables based on how they are accessed and
how they are used as parameters to functions.

The global variable write_it is referenced at the locations marked ©
in Listing 9-1. Associated write cross-references are generated and displayed as
comments for the write_it variable, indicating the program locations that
modify the contents of the variable. Write cross-references utilize the w suffix.
Here again, IDA has determined the size of the variable based on the fact
that the 32-bit EAX register is copied into write_it. Note that the list of cross-
references displayed at write it terminates with an ellipsis (® above), indi-
cating that the number of cross-references to write it exceeds the current
display limit for cross-references. This limit can be modified through the Num-
ber of displayed xrefs setting on the Cross-references tab in the Options »
General dialog. As with read cross-references, write cross-references can origi-
nate only from a program instruction but may reference any program location.
Generally speaking, a write cross-reference that targets a program instruction
byte is indicative of self-modifying code, which is usually considered bad form
and is frequently encountered in the de-obfuscation routines used in malware.

The third type of data cross-reference, an offset cross-reference, indicates
that the address of a location is being used (rather than the content of the
location). The address of global variable ref it is taken at location @ in List-
ing 9-1, resulting in the offset cross-reference comment at ref it in the
previous listing (suffix o). Offset cross-references are commonly the result
of pointer operations either in code or in data. Array access operations,
for example, are typically implemented by adding an offset to the starting
address of the array. As a result, the first address in most global arrays can

often be recognized by the presence of an offset cross-reference. For this rea-
son, most string data (strings being arrays of characters in C/C++) is the tar-
get of offset cross-references.

Unlike read and write cross-references, which can originate only from
instruction locations, offset cross-references can originate from either instruc-
tion locations or data locations. An example of an offset that can originate
from a program’s data section is any table of pointers (such as a vtable) that
results in the generation of an offset cross-reference from each location
within the table to the location being pointed to by those locations. You can
see this if you examine the vtable for class subClass from Chapter 8, whose
disassembly is shown here:

.1data:00408148 off 408148 dd offset SubClass::vfunci(void) ; DATA XREF: SubClass::SubClass(void)+12/No

.rdata:0040814C
.rdata:00408150
.rdata:00408154
.rdata:00408158

dd offset BaseClass::vfunc2(void)
dd offset SubClass::vfunc3(void)
dd offset BaseClass::vfunc4(void)
dd offset SubClass::vfunc5(void)

Here you see that the address of the vtable is used in the function
SubClass: :SubClass(void), which is the class constructor. The header lines
for function subClass: :vfunc3(void), shown here, show the offset cross-
reference that links the function to a vtable.

.text:00401080 public: virtual void _ thiscall SubClass::vfunc3(void) proc near

. text: 00401080

; DATA XREF. .rdata: 004081500

This example demonstrates one of the characteristics of C++ virtual func-
tions that becomes quite obvious when combined with offset cross-references,
namely that C++ virtual functions are never called directly and should never be
the target of a call cross-reference. Instead, all C++ virtual functions should be
referred to by at least one vtable entry and should always be the target of at
least one offset cross-reference. Remember that overriding a virtual function
is not mandatory. Therefore, a virtual function can appear in more than one
vtable, as discussed in Chapter 8. Backtracking offset cross-references is one
technique for easily locating C++ vtables in a program’s data section.

Cross-Reference Lists

With an understanding of what cross-references are, we can now discuss the
manner in which you may access all of this data within IDA. As mentioned
previously, the number of cross-reference comments that can be displayed
at a given location is limited by a configuration setting that defaults to 2. As
long as the number of cross-references to a location does not exceed this
limit, then working with those cross-references is fairly straightforward.
Mousing over the cross-reference text displays the disassembly of the source
region in a tool tip-style display, while double-clicking the cross-reference
address jumps the disassembly window to the source of the cross-reference.

Cross-References and Graphing 173

174

Chapter 9

There are two methods for viewing the complete list of cross-references
to a location. The first method is to open a cross-references subview associ-
ated with a specific address. By positioning the cursor on an address that is
the target of one or more cross-references and selecting View » Open
Subviews » Cross-References, you can open the complete list of cross-
references to a given location, as shown in Figure 9-3, which shows the
complete list of cross-references to variable write_it.

xrefs to write_it 3 =
Tyr| Address
_main+18 mov write_it, eax
L=| Up w _main+2E moy write_it, 2
@ Up w _main:loc_401044 moy write_it, 1
K b

Line 1of 3

Figure 9-3: Cross-reference display window

The columns of the window indicate the direction (Up or Down) to the
source of the cross-reference, the type of cross-reference (using the type suf-
fixes discussed previously), the source address of the cross-reference, and the
corresponding disassembled text at the source address, including any com-
ments that may exist at the source address. As with other windows that display
lists of addresses, double-clicking any entry repositions the disassembly display
to the corresponding source address. Once opened, the cross-reference dis-
play window remains open and accessible via a title tab displayed along with
every other open subview’s title tab above the disassembly area.

The second way to access a list of cross-references is to highlight a name
that you are interested in learning about and choose Jump » Jump to xref
(hotkey cTRL-X) to open a dialog that lists every location that references the
selected symbol. The resulting dialog, shown in Figure 9-4, is nearly identical
in appearance to the cross-reference subview shown in Figure 9-3. In this
case, the dialog was activated using the cTRL-X hotkey with the first instance
of write it (.text:0040102B) selected.

i

write_it, eax
mov write_jt, 2
mov write_it, 1

OK I Cancel | Search | Help |

Line 1of 3 i

Figure 9-4: Jump to cross-reference dialog

The primary difference in the two displays is behavioral. Being a modal
dialog,! the display in Figure 9-4 has buttons to interact with and terminate

1. A modal dialog must be closed before you can continue normal interaction with the
underlying application. Modeless dialogs can remain open while you continue normal
interaction with the application.

the dialog. The primary purpose of this dialog is to select a referencing loca-
tion and jump to it. Double-clicking one of the listed locations dismisses the
dialog and repositions the disassembly window at the selected location. The
second difference between the dialog and the cross-reference subview is that
the former can be opened using a hotkey or context-sensitive menu from any
instance of a symbol, while the latter can be opened only when you position
the cursor on an address that is the target of a cross-reference and choose
View » Open Subviews » Cross-References. Another way of thinking about it
is that the dialog can be opened at the source of any cross-reference, while
the subview can be opened only at the destination of the cross-reference.

An example of the usefulness of cross-reference lists might be to rapidly
locate every location from which a particular function is called. Many people
consider the use of the C strcpy? function to be dangerous. Using cross-
references, locating every call to strcpy is as simple as finding any one call to
strcpy, using the cTRL-X hotkey to bring up the cross-reference dialog, and
working your way through every call cross-reference. If you don’t want to take
the time to find strcpy used somewhere in the binary, you can even get away
with adding a comment with the text strcpy in it and activating the cross-
reference dialog using the comment.®

Function Calls

A specialized cross-reference listing dealing exclusively with function calls

is available by choosing View » Open Subviews » Function Calls. Figure 9-5
shows the resulting dialog, which lists all locations that call the current func-
tion (as defined by the cursor location at the time the view is opened) in the
upper half of the window and all calls made by the current function in the
lower half of the window.

Function calls: _main #
= 7
Address | Caller | Instruction |
1f.text:0040117E ©_ tmainCRTStartup | call _main
Address Called function
1|.text:00401030 cal calflow
2| .text:00401054 call calflow

Figure 9-5: Function calls window

Here again, each listed cross-reference can be used to quickly reposition
the disassembly listing to the corresponding cross-reference location. Restrict-
ing ourselves to considering function call cross-references allows us to think
about more abstract relationships than simple mappings from one address to

2. The C strcpy function copies a source array of characters, up to and including the associated
null termination character, to a destination array, with no checks whatsoever that the destination
array is large enough to hold all of the characters from the source.

3. When a symbol name appears in a comment, IDA treats that symbol just as if it was an operand
in a disassembled instruction. Double-clicking the symbol repositions the disassembly window,
and the right-click context-sensitive menu becomes available.

Cross-References and Graphing 175

176

another and instead consider how functions relate to one another. In the
next section, we show how IDA takes advantage of this by providing several
types of graphs, all designed to assist you in interpreting a binary.

IDA Graphing

Chapter 9

Because cross-references relate one address to another, they are a natural
place to begin if we want to make graphs of our binaries. By restricting our-
selves to specific types of cross-references, we can derive a number of useful
graphs for analyzing our binaries. For starters, cross-references serve as the
edges (the lines that connect points) in our graphs. Depending on the type
of graph we wish to generate, individual nodes (the points in the graph) can
be individual instructions, groups of instructions called basic blocks, or entire
functions. IDA has two distinct graphing capabilities: an external graphing
capability utilizing a bundled graphing application and an integrated, inter-
active graphing capability. Both of these graphing capabilities are covered in
the following sections.

IDA External (Third-Party) Graphing

IDA’s external graphing capability utilizes third-party graphing applications
to display IDA-generated graph files. For Windows versions prior to 6.1, IDA
ships with a bundled graphing application named wingraph32.* For IDA 6.0,
non-Windows versions of IDA are configured to use the dotty® graph viewer
by default. Beginning with IDA 6.1, all versions of IDA ship with and are
configured to use the qwingraph® graph viewer, which is a cross-platform Qt
port of wingraph32. While the dotty configuration options remain visible for
Linux users, they are commented out by default. The graph viewer used
by IDA may be configured by editing the GRAPH_VISUALIZER variable in
<IDADIR>/cfg/ida.cfg.

Whenever an external-style graph is requested, the source for the graph
is generated and saved to a temporary file; then the designated third-party
graph viewer is launched to display the graph. IDA supports two graph speci-
fication languages, Graph Description Language’ (GDL) and the DOT? lan-
guage utilized by the graphviz® project. The graph specification language used
by IDA may be configured by editing the GRAPH_FORMAT variable in <IDADIR>/
cfg/ida.cfg. Legal values for this variable are boT and abL. You must ensure that
the language you specify here is compatible with the viewer you have speci-
fied in GRAPH_VISUALIZER.

4. Hex-Rays makes the source for wingraph32 available at http://www.hex-rays.com/idapro/freefiles/
wingraph32_src.zip.

5. dotty is a graph viewing tool included as part of the graphviz project.

6. Hex-Rays makes the source for qwingraph available at http://www.hex-rays.com/idapro/freefiles/
qwingraph_sre.zip.

7. A GDL reference can be found at http://www.absint.com/aisee/manual/windows/node58.html.
8. A DOT reference can be found at http://www.graphviz.org/doc/info/lang.html.
9. See http://www.graphviz.org/.

Five types of graphs may be generated from the View » Graphs submenu.
Available external mode graphs include the following:

e Function flowchart

e Call graph for the entire binary

e Graph of cross-references to a symbol

e Graph of cross-references from a symbol
e Customized cross-reference graph

For two of these, the flowchart and the call graph, IDA is capable of gen-
erating and saving GDL (not DOT) files for use independently of IDA. These
options may be found on the File » Produce file submenu. Saving the specifi-
cation file for other types of graphs may be possible if your configured graph
viewer allows you to save the currently displayed graph. A number of limita-
tions exist when dealing with any external graph. First and foremost is the
fact that external graphs are not interactive. Manipulation of displayed exter-
nal graphs is limited by the capabilities of your chosen external graph viewer
(often only zooming and panning).

BASIC BLOCKS

In a computer program, a basic block is a grouping of one or more instructions
with a single entry to the beginning of the block and a single exit from the end of
the block. In general, other than the last instruction, every instruction within a basic
block transfers control to exactly one successor instruction within the block. Similarly,
other than the first instruction, every instruction in a basic block receives control from
exactly one predecessor instruction within the block. For the purposes of basic block
determination, the fact that function call instructions transfer control outside the cur-
rent function is generally ignored unless it is known that the function being called
fails to return normally. An important behavioral characteristic of basic blocks is that
once the first instruction in a basic block is executed, the remainder of the block is
guaranteed to execute to completion. This can factor significantly into runtime instru-
mentation of a program, since it is no longer necessary to set a breakpoint on every
instruction in a program or even single-step the program in order to record which
instructions have executed. Instead, breakpoints can be set on the first instruction of
each basic block, and as each breakpoint is hit, every instruction in its associated
block can be marked as executed. The Process Stalker component of Pedram Amini’s
PaiMei* framework performs in exactly this manner.

*Please see http://pedram.redhive.com/code/paimei/.

External Flowcharts

With the cursor positioned within a function, View » Graphs » Flow
Chart (hotkey F12) generates and displays an external flowchart. The flow-
chart display is the external graph that most closely resembles IDA’s inte-
grated graph-based disassembly view. These are not the flowcharts you may
have been taught during an introductory programming class. Instead, these

Cross-References and Graphing 177

178

Chapter 9

graphs might better be named “control flow graphs,” as they group a func-
tion’s instructions into basic blocks and use edges to indicate flow from one
block to another.

Figure 9-6 shows a portion of the flowchart of a relatively simple func-
tion. As you can see, external flowcharts offer very little in the way of address
information, which can make it difficult to correlate the flowchart view to its
corresponding disassembly listing.

= WinGraph32 - Graph of sub_401030 3 _ o) x|
File Yiew Zoom Move Help
S| alafxe|+| [+ Slel==| [N
sub_401030: B
push ebp
moy ebp, esp
push acH
moy [ebptvar_4], 0
moy gax, [ebp+arg_0]
cmp gax, [ebptarg_4]
io short loc_401053 ||
false trua
00401043 : ;25_401022; [ebptarg_0]
mov BLHs Ee?p+arg_21 add cax, [ebptarg 4] Ad|
L1}] 1
|113.33°.-"o |(D,D) |5 nodes, 16 edge segments, 1 crossings i

Figure 9-6: External flowchart graph

Flowchart graphs are derived by following the ordinary and jump flows for
each instruction in a function, beginning with the entry point to the function.

External Call Graphs

A function call graph is useful for gaining a quick understanding of the hier-
archy of function calls made within a program. Call graphs are generated

by creating a graph node for each function and then connecting function
nodes based on the existence of a call cross-reference from one function to
another. The process of generating a call graph for a single function can be
viewed as a recursive descent through all of the functions that are called from
the initial function. In many cases, it is sufficient to stop descending the call
tree once a library function is reached, as it is easier to learn how the library
function operates by reading documentation associated with the library
rather than by attempting to reverse engineer the compiled version of the
function. In fact, in the case of a dynamically linked binary it is not possible
to descend into library functions, since the code for such functions is not
present within the dynamically linked binary. Statically linked binaries present
a different challenge when generating graphs. Since statically linked binaries
contain all of the code for the libraries that have been linked to the program,
related function call graphs can become extremely large.

In order to discuss function call graphs, we make use of the following
trivial program that does nothing other than create a simple hierarchy of
function calls:

#include <stdio.h>

void depth 2 1() {
printf("inside depth_2_1\n");
}

void depth 2 2() {
fprintf(stderr, "inside depth_2 2\n");
}

void depth _1() {
depth_2_1();
depth 2 _2();
printf("inside depth_1\n");

}

int main() {
depth_1();

}

After compiling a dynamically linked binary using GNU gcc, we can ask
IDA to generate a function call graph using View » Graphs » Function Calls,
which should yield a graph similar to that shown in Figure 9-7. In this instance
we have truncated the left side of the graph somewhat in order to offer a bit
more detail. The call graph associated with the main function can be seen
within the circled area in the figure.

= WinGraph32 - Call flow of call_tree E i (=] 3]

File View Zoom Move Help

Bl alalmel+ T ele== s

__libc_esu_fini | ‘__'I ibc_csu_init | .term_proc _start / main \;I

|__1‘EEE .get_pe_thunk by ‘ | .init_proc ‘ ‘__dn_g'lnha'l_dtnrs_aux ‘ | _libc star mam ‘depth l|

‘ .__gmon_gtart__ | |fr'ame,dummy | ‘,,do,g]oba],ctor‘s,aux depth_Z_1
=l
]] /2l
[96.77% [(-840,0) [23 nodes, 14 edge segments, 0 crossings S~ 4

Figure 9-7: External function call graph

Cross-References and Graphing 179

180

Chapter 9

Alert readers may notice that the compiler has substituted calls to puts
and furite for printf and fprintf, respectively, as they are more efficient
when printing static strings. Note that IDA utilizes different colors to repre-
sent different types of nodes in the graph, though the colors are not config-
urable in any way.°

Given the straightforward nature of the previous program listing, why
does the graph appear to be twice as crowded as it should be? The answer is
that the compiler, as virtually all compilers do, has inserted wrapper code
responsible for library initialization and termination as well as for configur-
ing parameters properly prior to transferring control to the main function.

Attempting to graph a statically linked version of the same program
results in the nasty mess shown in Figure 9-8.

The graph in Figure 9-8 demonstrate a behavior of external graphs
in general, namely that they are always scaled initially to display the entire
graph, which can result in very cluttered displays. For this particular graph,
the status bar at the bottom of the WinGraph32 window indicates that there
are 946 nodes and 10,125 edges that happen to cross over one another in
100,182 locations. Other than demonstrating the complexity of statically
linked binaries, this graph is all but unusable. No amount of zooming and
panning will simplify the graph, and beyond that, there is no way to easily
locate a specific function such as main other than by reading the label on each
node. By the time you have zoomed in enough to be able to read the labels
associated with each node, only a few dozen nodes will fit within the display.

= WinGraph32 - Call flow of call_tree_s O] x|

File Yiew Zoom Move Help

3| alalxz+| [T ole|== [

k&

[z.08% [(-540,00 [a46 nodes, 10125 edge segments, 100152 crossings

yMER

Figure 9-8: Function call graph in a statically linked binary

External Cross-Reference Graphs

Two types of cross-reference graphs can be generated for global symbols
(functions or global variables): cross-references to a symbol (View » Graphs »
Xrefs To) and cross-references from a symbol (View » Graphs » Xrefs From).
To generate an Xrefs To graph, a recursive ascent is performed by backtrack-
ing all cross-references to the selected symbol until a symbol to which no other
symbols refer is reached. When analyzing a binary, you can use an Xrefs To

10. The graphs depicted in this chapter have been edited outside of IDA to remove node
coloring for the purposes of improving readability.

graph to answer the question, “What sequence of calls must be made to
reach this function?” Figure 9-9 shows the use of an Xrefs To graph to display
the paths that can be followed to reach the puts function.

= WinGraph32 - Xrefs to .puts 10l =|

File View Zoom Move Help

3| alalxz+| [Fole== [N

|_start| _I

main
depth_1
i N

[
Kl] 0
|110.00% |(80,0) |5 nodes, 6 edge segments, 0 crossings v

Figure 9-9: Xrefs To graph

Similarly, Xrefs To graphs can assist you in visualizing all of the locations
that reference a global variable and the chain of function calls required to
reach those locations. Cross-reference graphs are the only graphs capable of
incorporating data cross-reference information.

In order to create an Xrefs From graph, a recursive descent is performed
by following cross-references from the selected symbol. If the symbol is a
function name, only call references from the function are followed, so data
references to global variables do not show up in the graph. If the symbol is
an initialized global pointer variable (meaning that it actually points to some-
thing), then the corresponding data offset cross-reference is followed. When
you graph cross-references from a function, the effective behavior is a func-
tion call graph rooted at the selected function, as shown in Figure 9-10.

Unfortunately, the same cluttered graph problems exist when graphing
functions with a complex call graph.

Cross-References and Graphing 181

182

Chapter 9

il

File View Zoom Move Help

3| alalx2+| [F ole== [N

main

—
T
—

dep

N

depth_2_7| | [depth_2_1

| .erite| | .puts|
A |

|141.6?% |(40,0} |6 nodes, 7 edge segments, 0 crossings

N =

Figure 9-10: Xrefs From graph

Custom Cross-Reference Graphs

Custom cross-reference graphs, called User xref charts in IDA, provide the
maximum flexibility in generating cross-reference graphs to suit your needs.
In addition to combining cross-references to a symbol and cross-references
from a symbol into a single graph, custom cross-reference graphs allow you
to specify a maximum recursion depth and the types of symbols that should
be included or excluded from the resulting graph.

View » Graphs » User Xrefs Chart opens the graph customization dialog
shown in Figure 9-11. Each global symbol that occurs within the specified
address range appears as a node within the resulting graph, which is con-
structed according to the options specified in the dialog. In the most com-
mon case, generating cross-references from a single symbol, the start and
end addresses are identical. If the start and end addresses differ, then the
resulting graph is generated for all nonlocal symbols that occur within the
specified range. In the extreme case where the start address is the lowest
address in the database and the end address is the highest address in the
database, the resulting graph degenerates to the function call graph for the
entire binary.

4 User xrefs chart

Start address I Jtext:0804846F 'l
End address I Jtext:0804846F 'l

Starting direction
V¥ Cross references to

[V Cross references from

Parameters
i Recursive

¥ Follow only current direction

[~ From library functions
[~ To library functions

Recursion depth I -1 'l
Ignore

[Externals

v Data

Print options
[~ Print comments

¥ Print recursion dots

21|

OK I Cancel | Help |

Figure 9-11: User cross-reference graph dialog

The options that are selected in Figure 9-11 represent the default

options for all custom cross-reference graphs. Following is a description of
the purpose of each set of options:

Starting direction

Options allow you to decide whether to search for cross-references from
the selected symbol, to the selected symbol, or both. If all other options
are left at their default settings, restricting the starting direction to Cross
references to results in an Xrefs To-style graph, while restricting direc-
tion to Cross references from generates an Xrefs From-style graph.

Parameters

The Recursive option enables recursive descent (Xrefs From) or ascent
(Xrefs To) from the selected symbols. Follow only current direction
forces any recursion to occur in only one direction. In other words, if
this option is selected, and node B is discovered to be reachable from
node A, the recursive descent into B adds additional nodes that can be
reached only from node B. Newly discovered nodes that refer to node B
will not be added to the graph. If you choose to deselect Follow only cur-
rent direction, then when both starting directions are selected, each new
node added to the graph is recursed in both the to and from directions.

Recursion depth

This option sets the maximum recursion depth and is useful for limiting
the size of generated graphs. A setting of —1 causes recursion to proceed
as deep as possible and generates the largest possible graphs.

Cross-References and Graphing 183

184

Chapter 9

Ignore
These options dictate what types of nodes will be excluded from the gen-
erated graph. This is another means of restricting the size of the result-
ing graph. In particular, ignoring cross-references from library functions
can lead to drastic simplifications of graphs in statically linked binaries.
The trick is to make sure that IDA recognizes as many library functions
as possible. Library code recognition is the subject of Chapter 12.

Print options
These options control two aspects of graph formatting. Print comments
causes any function comments to be included in a function’s graph
node. If Print recursion dots is selected and recursion would continue
beyond the specified recursion limit, a node containing an ellipsis is dis-
played to indicate that further recursion is possible.

Figure 9-12 shows a custom cross-reference graph generated for function
depth_1 in our example program using default options and a recursion depth
of 1.

= WinGraph32 - User defined xrefs chart: d - |EI|1|

File View Zoom Move Help

3| alalx2+| [Fole== [N

o

J

depth_2_7| | [depth_z_1

[
Kl [2
|110.00% |(60,0) |? nodes, & edge segments, 0 crossings i

Figure 9-12: User xref graph for function depth_1

User-generated cross-reference graphs are the most powerful external-
mode graphing capability available in IDA. External flowcharts have largely
been superseded by IDA’s integrated graph-based disassembly view, and the
remaining external graph types are simply canned versions of user-generated
cross-reference graphs.

IDA’s Integrated Graph View

With version 5.0, IDA introduced a long-awaited interactive, graph-based dis-
assembly view that was tightly integrated into IDA. As mentioned previously,
the integrated graphing mode provides an alternative interface to the stan-
dard text-style disassembly listing. While in graph mode, disassembled func-
tions are displayed as control flow graphs similar to external-style flowchart
graphs. Because a function-oriented control flow graph is used, only one
function at a time can be displayed while in graph mode, and graph mode
cannot be used for instructions that lie outside any function. For cases in
which you wish to view several functions at once, or when you need to view
instructions that are not part of a function, you must revert to the text-ori-
ented disassembly listing.

We detailed basic manipulation of the graph view in Chapter 5, but we
reiterate a few points here. Switching between text view and graph view is
accomplished by pressing the spacebar or right-clicking anywhere in the dis-
assembly window and selecting either Text View or Graph View as appropri-
ate. The easiest way to pan around the graph is to click the background of
the graph view and drag the graph in the appropriate direction. For large
graphs, you may find it easier to pan using the Graph Overview window
instead. The Graph Overview window always displays a dashed rectangle
around the portion of the graph currently being displayed in the disassembly
window. At any time, you can click and drag the dashed rectangle to reposi-
tion the graph display. Because the graph overview window displays a minia-
ture version of the entire graph, using it for panning eliminates the need to
constantly release the mouse button and reposition the mouse as required
when panning across large graphs in the disassembly window.

There are no significant differences between manipulating a disassembly
in graph mode and manipulating a disassembly in text mode. Double-click
navigation continues to work as you would expect it to, as does the navigation
history list. Any time you navigate to a location that does not lie within a func-
tion (such as a global variable), the display will automatically switch to text
mode. Graph mode will automatically be restored once you navigate back to
a function. Access to stack variables is identical to that of text mode, with the
summary stack view being displayed in the root basic block of the displayed
function. Detailed stack frame views are accessed by double-clicking any stack
variable, just as in text mode. All options for formatting instruction oper-
ands in text mode remain available and are accessed in the same manner in
graph mode.

Cross-References and Graphing 185

186

Chapter 9

The primary user interface change related to graph mode deals with the
handing of individual graph nodes. Figure 9-13 shows a simple graph node
and its related title bar button controls.

mov eax, [ebp+arg 0]
add eax, [ebp+arg 4]
add eax, [ebp+arg 8]
mov [ebp+var 4], eax

|
Figure 9-13: Typical expanded graph view node

From left to right, the three buttons on the node’s title bar allow you to
change the background color of the node, assign or change the name of the
node, and access the list of cross-references to the node. Coloring nodes is a
useful way to remind yourself that you have already analyzed a node or to
simply make it stand out from others, perhaps because it contains code of
particular interest. Once you assign a node a color, the color is also used as
the background color for the corresponding instructions in text mode. To
easily remove any coloring, right-click the node’s title bar and select Set node
color to default.

The middle button on the title bar in Figure 9-13 is used to assign a
name to the address of the first instruction of the node’s basic block. Since
basic blocks are often the target of jump instructions, many nodes may
already have a dummy name assigned as the result of being targeted by a
jump cross-reference. However, it is possible for a basic block to begin with-
out having a name assigned. Consider the following lines of code:

.text:00401041 Qjg short loc_401053
.text:00401043 Bnov ecx, [ebp+arg 0]

The instruction at @ has two potential successors, loc_ 401053 and the
instruction at @. Because it has two successors, @ must terminate a basic
block, which results in ® becoming the first instruction in a new basic block,
even though it is not targeted explicitly by a jump and thus has no dummy
name assigned.

The rightmost button in Figure 9-13 is used to access the list of cross-
references that target the node. Since cross-reference comments are not dis-
played by default in graph mode, this is the easiest way to access and navigate
to any location that references the node. Unlike the cross-reference lists we
have discussed previously, the generated node cross-reference list also con-
tains an entry for the ordinary flow into the node (designated by type »). This
is required because it is not always obvious in graph view which node is the
linear predecessor of a given node. If you wish to view normal cross-reference

comments in graph mode, access the Cross-References tab under Options »
General and set the Number of displayed xrefs option to something other
than zero.

Nodes within a graph may be grouped either by themselves or with other
nodes in order to reduce some of the clutter in a graph. To group multiple
nodes, cTRL-click the title bar of each node to be grouped and then right-
click the title bar of any selected node and select Group nodes. You will be
prompted to enter some text (defaults to the first instruction in the group) to
be displayed in the collapsed node. Figure 9-14 shows the result of grouping
the node in Figure 9-13 and changing the node text to collapsed node demo.

‘Fi
BN FHE

collapsed node demo

Figure 9-14: Typical collapsed (grouped) graph view node

Note that two additional buttons are now present in the title bar. In left-
to-right order, these buttons allow you to uncollapse (expand) the grouped
node and edit the node text. Uncollapsing a node merely expands the nodes
within a group to their original form; it does not change the fact that the
node or nodes now belong to a group. When a group is uncollapsed, the two
new buttons just mentioned are removed and replaced with a single Collapse
Group button. An expanded group can easily be collapsed again using the
Collapse Group button or by right-clicking the title bar of any node in the
group and selecting Hide Group. To completely remove a grouping applied
to one or more nodes, you must right-click the title bar of the collapsed node
or one of the participating uncollapsed nodes and select Ungroup Nodes.
This action has the side effect of expanding the group if it was collapsed at
the time.

Summary

Graphs are a powerful tool available to assist you in analyzing any binary. If
you are accustomed to viewing disassemblies in pure text format, it may take
some time to adjust to using a graph-based display. In IDA, it is generally a
matter of realizing that all of the information that was available in the text
display remains available in the graph display; however, it may be formatted
somewhat differently. Cross-references, for example, become the edges that
connect the basic blocks in a graph display.

Choosing the proper graph to view plays an important role in optimizing
the use of graphs for analysis. If you want to know how a particular function is
reached, then you are probably interested in a function call or cross-reference
graph. If you want to know how a specific instruction is reached, then you are
probably more interested in a control flow graph.

Cross-References and Graphing 187

188

Chapter 9

Some of the frustration that users have experienced in the past with
IDA’s graphing capabilities is directly attributable to the inflexibility of
the wingraph32 application and its related graphs. These frustrations were
addressed in part with the introduction of an integrated graph-based disas-
sembly mode. IDA is primarily a disassembler, however, and graph genera-
tion is not its primary purpose. Readers interested in dedicated graph-based
analysis tools may wish to investigate applications designed specifically for
that purpose, such as BinNavi,'! produced by Halvar Flake’s company
Zynamics.?

11. See http://www.zynamics.com/binnavi.html.
12. Note that Zynamics was acquired by Google in March 2011.

THE MANY FACES OF IDA

For many years, the Windows GUI version
was the superstar in the IDA stable. Since
the release of IDA version 6.0 this is no
longer the case, as Linux and OS X users can
now enjoy GUI versions of IDA for their platforms.
However, this new version in no way changes the fact

that there are several alternative ways to use IDA. The

original version of IDA was actually an MS-DOS console application, and the
console version remains available on all platforms to this day. With built-in
remote debugging capabilities, IDA is a powerful multiplatform analysis and
debugging tool.

Beyond its interactive capabilities, IDA offers a batch-processing mode in
all of its versions to facilitate automated processing of large numbers of files.
The key to effective batch processing with IDA is to understand what each
version can and cannot do and choose the appropriate version of IDA to suit
your requirements. In this chapter we discuss IDA’s console version and how
to make the most of IDA’s batch-processing facilities.

190

Console Mode IDA

Chapter 10

The heart of all console versions of IDA is a Borland-developed, console 1/0
library called TVision that has been ported to several platforms, including
Windows, Linux, and Mac OS X, among others. Hex-Rays makes the source
code for its current TVision port available to paying IDA customers on its
IDA download page.!

The use of acommon library across all platforms keeps the user interface
consistent on all of the console versions. There are a few annoyances to deal
with in moving from platform to platform, however, such as varying degrees
of support for the mouse, resizing, and the ability to pass hotkeys to the IDA
application. We discuss some of the problems and, when available,
workarounds in the platform-specific sections that follow.

Common Features of Console Mode

As the term console mode implies, the text-based versions of IDA all run within
a terminal or shell of some sort. These consoles may have varying degrees of
support for resizing and the use of a mouse, resulting in limitations that you
will need to learn to live with. The types of limitations depend on which plat-
form and terminal program you are using.

The console user interface consists of a menu bar across the top line of
the display to show menu options and status and a common operations bar
across the bottom line of the display that’s similar to a text-based toolbar.
Available operations are activated using hotkeys or, when supported, by click-
ing the mouse. Virtually every command available in the GUI version is avail-
able in some form in the console version, and most of the hotkey associations
are preserved as well.

The IDA display windows consume the space between the upper menu
bar and the lower command bar. However, a common limitation, regardless
of which terminal program you happen to use, is that there is little display
room when the screen is limited to roughly 80 by 25 characters and no
graphics. Therefore, console versions of IDA typically open only two display
windows by default: the disassembly window and the messages window. In
order to approximate the tabbed display windows found in the GUI version,
IDA uses the TVision library’s overlapping windowing capability for text win-
dows and assigns the F6 key (in lieu of window title tabs) to cycle through
available open windows. Each window is numbered sequentially, and the win-
dow ID is present in the upper left-hand corner.

When mouse support is available in your console, it is possible to resize
an IDA display window by clicking and dragging the lower right corner of the
display window to the desired size. To reposition a display window, you click
and drag the display’s top border. Lacking mouse support, you can move and
resize individual displays via Window » Resize/Move (CTRL-F5) and then use
your arrow keys to move and sHIFT-arrow keys to resize the active window.
If your terminal program can be resized using the mouse, IDA recognizes the
new terminal size and expands (or shrinks) to fill it as appropriate.

1. See http://www.hex-rays.com/idapro/idadown.htm.

Without graphics capability, the integrated graph-based disassembly
mode is not available, and no control-flow arrows are displayed in the left
margin of the disassembly listing window. However, all subviews available in
the GUI version are available in the console versions. As in the GUI version,
the majority of subviews are accessible via the View » Open Subviews menu.
The one major difference in available displays is that hex dumps are not
available as a unique subview. Instead, you can toggle a disassembly to a hex
dump and back using Options » Dump/Normal View (CTRL-F4). In order to
have both a disassembly and a hex view open simultaneously, you must open
a second disassembly window (View » Open Subviews » Disassembly) and tog-
gle the new view to a hex dump. Unfortunately, there is no way to synchro-
nize the new hex dump to the existing disassembly view.

With mouse support, navigating your way around the disassembly remains
much the same as the GUI version, where double-clicking any name takes
you to the corresponding address. Alternatively, positioning the cursor on a
name and pressing ENTER causes the display to jump to the corresponding
named location (this also happens to work in the GUI version). Pressing
ENTER while the cursor is positioned on the name of a stack variable opens
the detailed stack frame view for the associated function. Without mouse sup-
port, the menus work similarly to many other console applications, employ-
ing the ALT-x method of menu navigation, where x is a highlighted character
on the current screen.

Windows Console Specifics

The Windows ¢cmd.exe (command.exe on the Windows 9x family) terminal is not
terribly flexible, but it is fairly well supported by IDA’s console version. The
Windows console version of IDA is named idaw.exe, while the GUI version

is named idag.exe. The corresponding versions for 64-bit binaries (available
with the advanced version of IDA) are named idaw64.exe and idag64.exe,
respectively.

In order for IDA’s mouse support to work in Windows, you must ensure
that QuickEdit mode is disabled for the terminal in which you are running
IDA. To configure QuickEdit mode as one of the terminal’s properties, right-
click the terminal’s title bar and select Properties; then deselect QuickEdit
mode on the Options tab. You must do this prior to launching IDA, as the
change will not be recognized while IDA is running.

Unlike Linux terminals running under X Windows, cmd.exe cannot be
expanded by using the mouse to enlarge the window. On Windows only,
IDA’s console version offers the Window » Set Video Mode menu option
to resize cmd.exe to one of six fixed terminal sizes, up to a maximum of 255
by 100.

While no graph mode is available in the disassembly window, IDA’s
external graphing options are available. Selections from the View » Graphs
menu will cause IDA to launch the configured graph viewer (such as
gwingraph) to display the resulting graph. For Windows versions of IDA, it
is possible to open several graphs at once and continue to use IDA while
the graphs are open.

The Many Faces of IDA 191

192

Chapter 10

Linux Console Specifics

The Linux console version of IDA is named idal (or idal64 for analyzing
64-bit binaries). Prior to IDA 6.0, Linux and OS X console versions were
included as standard components of your IDA distribution. As such, when
you copy these console versions to your Linux or OS X platform, you must
also copy your IDA key file (ida.key) so that your console version will run
properly. Note that this requires that you install IDA on a Windows machine
at least once, even if you never intend to run the Windows version. On Unix-
style systems you may alternatively copy your key file to SHOME/.idapro/
ida.key. If you do not create it, IDA automatically creates the IDA personal
settings directory ($HOME/ .idapro) the first time you launch IDA.

IDA 6.x installations are much simpler. Because IDA 6.x is purchased for
a specific platform, the installation procedure on your platform takes care of
installing the GUI version, the console version, and your IDA key file to suit-
able locations.

Basic navigation in the Linux version is similar to navigation in the Win-
dows console version; several Linux specifics are addressed in this section.
Users’ tastes for Linux terminal programs are as varied as their tastes for
Linux distributions in general. IDA includes a file named tvtuning.txt that
offers some details on how to configure various terminal types, including
remote Windows terminal clients such as SecureCRT and PuTTY.

One of the biggest challenges that you will face when using Linux termi-
nal programs is making sure that your hotkey sequences are passed all the
way to IDA and not captured by the terminal program itself. For example,
will ALT-F open IDA’s File menu or your console’s File menu? The two
options for dealing with this problem are to find a terminal program whose
hotkey sequences don’t overlap IDA’s (or that can be configured not to over-
lap) or to edit IDA’s configuration file to remap commands to hotkeys that
are not used by your terminal. If you choose to remap the hotkeys, you may
want to update the hotkey mappings on every computer on which you use
IDA so that you don’t have to remember which mapping is in effect at each
location. You may also find it difficult to interact with other IDA users who
are using the default mappings.

If you choose to use the standard Linux text display, the dimensions of
your IDA console will be fixed, and your mouse support will be dependent
on your use of GPM (the Linux console mouse server). If you are not using
GPM for mouse support, you should specify the noGPM option for TVision
when you launch IDA, as shown here:

TVOPT=noGPM ./idal [file to disassemble]

Color choices are quite limited in console mode, and you may need to
adjust your color settings (Options » Colors) to ensure that all text is visible
and does not blend into the background. Four predefined color palettes are
available, with the option to customize the colors (a choice of 16) used for
various parts of the disassembly.

If you are running X, then you may be running KDE’s konsole, Ghome’s
gnome-terminal, a straight xterm, or some other variation on a terminal. Other
than xterm, most terminals offer their own menus and associated hotkeys that
may or may not overlap IDA’s hotkey assignments. Consequently, xterm is not
a bad choice for running IDA, although it is not necessarily the most visually
appealing. KDE’s konsole is our preferred Linux console as it offers the best
appearance, fewest hotkey collisions, and smoothest mouse performance.

In order to address some of the problems surrounding keyboard and
mouse use within various X Windows consoles, Jeremy Cooper developed a
native X11 port? of the TVision libraries. Using this modified version of TVi-
sion allows you to launch IDA in its own X window rather than consume an
entire console. Compiling Cooper’s TVision port yields a drop in replace-
ment for libtvision.so, the shared TVision library used by idal. After installing
the new library, you may receive an error message stating that a VGA font
can’t be loaded when you attempt to run IDA. If this happens, you will need
to install a VGA font and let your X server know where to find it. A suitable
VGA font is available at http://gilesorr.com/bashprompt/xfonts/ (download both
vga and sabvga). Another interesting feature of using the native X11 port is
that you can forward the X11 window to another machine. Thus, you can run
IDA on Linux but forward the X11 window (over ssh of course) to a Mac.

For remote access to your Linux-based IDA installation using the Hex-
Rays—supplied TVision libraries, we recommend that you configure your ter-
minal software to emulate an xterm (consult tvtuning.txt and your terminal
emulator’s documentation for more information) and then launch IDA
according to the instructions contained in tvtuning.txt. For example, you
must specify TVOPT=xtrack in order for the mouse to work with IDA when
using SecureCRT as your terminal emulator.

You can, of course, choose to export your TVOPT settings, eliminating the
need to specify them every time you launch IDA. For a full overview of avail-
able TVision options, refer to linux.cpp in the TVision source distribution.

External graph views on Linux are available from the console version
only if you happen to be running IDA in a windowing environment, and you
have configured the GRAPH_VISUALIZER variable in ida.cfg to point to a suitable
graph rendering program.® IDA versions prior to 6.0 are only capable of gen-
erating graphs using GDL. You may install a GDL viewer such as aiSee* and
configure IDA to launch the new application by editing IDA’s main configu-
ration file, <IDADIR>/cfg/ida.cfg. The configuration option GRAPH_VISUALIZER
specifies the command to be used to view IDA’s GDL graphs (all legacy mode
graphs). The default setting looks something like this:

GRAPH_VISUALIZER = "gwingraph.exe -remove -timelimit 10"

2. See http://simon.baymoo.org/universe/ida/tvision/.
3. Refer to “IDA Graphing” on page 176.

4. The GDL viewer aiSee is available for many platforms and is free for noncommercial use. It
can be found at http://www.aisee.de/.

The Many Faces of IDA 193

194

Chapter 10

The remove option asks qwingraph to delete the input file, which is useful
when you are displaying temporary files. The timelimit option specifies the
number of seconds to spend attempting to generate a pretty graph. If the
graph cannot be laid out neatly within this time, qwingraph switches to a “fast
and ugly™® layout algorithm. Beginning with IDA 6.0, the GRAPH_VISUALIZER
option is enclosed in a conditional block to provide separate settings for Win-
dows and non-Windows platforms. If you are editing ida.cfg on a non-Windows
platform, make sure that you are editing the correct portion of the file.

If you have installed a GDL viewer such as aiSee, then you need to edit
GRAPH_VISUALIZER to point to your viewer of choice. For a typical installation
of aiSee, this might result in the following:

GRAPH_VISUALIZER = "/usr/local/bin/aisee"

Note that it is always best to specify the full path to your GDL viewer
to ensure that it is found when IDA attempts to launch it. Finally, since
qwingraph is open source software, users of older versions of IDA are free
to download the source for gwingraph from Hex-Rays (see Chapter 9), build
it, and integrate qwingraph into their IDA installations.

0S X Console Specifics

IDA’s console versions for OS X are named the same as the Linux versions
(idal and idal64). As with the Linux and Windows console versions, the OS X
versions rely on the TVision library to support console 1/0.

The fact that the Mac keyboard has a different layout than a PC keyboard
presents a few challenges when running the Mac version of IDA, primarily
because the Mac’s OPTION/ALT key does not behave like the PC’s ALT key
where application menus are concerned.

The obvious choice for attempting to run IDA is the Mac’s Terminal
application. When launching IDA using Terminal, be sure to configure the
OPTION key as an ALT key for use within IDA. Doing so allows keyboard access
to IDA ALT key shortcuts, such as all of the main IDA menus (ALT-F for the
File menu, for example). If you don’t select this option, you’ll have to use the
ESC key in lieu of ALT; thus, Esc-F brings up the File menu. Since Esc has back
or close-window functionality in IDA, this approach is not recommended.
Figure 10-1 shows the Terminal Inspector dialog, which is accessed via Ter-
minal » Preferences when Terminal is active. Select the Use option key as
meta key checkbox to make the OPTION key behave as an ALT key.

One potential alternative to Terminal is iTERM,® which allows the ALT
functionality of the oPTION key and enables mouse support as well. Another
terminal that many developers seem to like is the gnome terminal, which has
been ported’ to X11 on OS X. Since this requires the installation of XCODE
and X11, we won’t do more than mention the existence of the port. Using
the default Terminal or iTERM should be sufficient for most users.

5. See timelm.c in the wingraph32 or qwingraph source distribution.
6. See http://iterm.sourceforge.net/.
7. See http://www.macports.org/.

An alternative way to run IDA on OS X is to install X11 (available on
your OS X installation disks as an optional package) and Jeremy Cooper’s
modified TVision library (libtvision.dylib for OS X) to run IDA as a native
X11 application. You may wish to add /usr/X11R6/bin to your system PATH
(edit PATH in /etc/profile) for easier access to X11-related binaries.

8enn Settings
[Text Window Shell Keyboard Advanced |
Default Key Action
control cursor left \033[5D
iﬁ| Grass control cursor right \033[5C m
end scroll to end of buffer
I [F1 \0330P
| | Fomehrew F2 10330Q
F3 YO0330R
T
|==285{ Novel Fa \03305
e F5 \033[15~
F& \033[17~
B o :
F& 4033[19~ F
e F9 1033120~ X
S o ; 7
| | | +] = Edit
= »w
|-| Red Sands M Use option as meta key
— ey —) 7
| + | = | % ~| Default O

Figure 10-1: Mac OS X Terminal keyboard settings dialog

In this configuration, IDA may be launched from an xterm, and it will
execute in its own window with full mouse functionality. The problem with
the oPTION/ALT key will remain, however, as X11 views this key as Mode_switch
and fails to pass the key to IDA. Fortunately, X11 allows you to remap keys
through the use of the xmodmap utility. One solution is to create (or edit) a
file named .Xmodmap in your home directory (something like /Users/idabook/
.Xmodmap) containing the following commands:

clear Mod1

keycode 66 = Alt L
keycode 69 = Alt R
add Mod1 = Alt_L
add Mod1 = Alt R

The default X11 startup script (/etc/X11/xinit/xinitrc) contains commands
to read .Xmodmap whenever you launch X11. If you have created your own
Xinitre file, which overrides the default xinitrc, you should make sure that it
contains a command such as the following; otherwise your .Xmodmap file will
not be processed.

©® xmodmap $HOME/.Xmodmap

The Many Faces of IDA 195

196

Finally, you need to modify the default settings for X11 to prevent the
system from overriding your modified key map. Figure 10-2 shows the X11
Preferences dialog.

BN X11 Preferences

[Input | Output Security |

EEmulate three button mouse
Hold Option and Command while clicking to activate the middle and
right mouse buttons.

"] Follow system keyboard layout

Allows input menu changes to overwrite the current X11 keymap.

E‘ Enable key equivalents under X11

When enabled, menu bar key equivalents may interfere with X11
applications that use the Meta modifier.

Figure 10-2: X11 Preferences on OS X

To prevent the system from overriding your keyboard mappings, you
must deselect the middle option: Follow system keyboard layout. Once you
have made this change, restart X11, and your modified keyboard settings
should take effect, making the ALT key available to access IDA’s menus. You
can verify that X11 recognizes the ALT key by using xmodmap to print the cur-
rent list of keyboard modifiers, as follows:

idabook:~ idabook$ xmodmap
xmodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift Shift L (ox40), Shift R (0x44)
lock Caps_Lock (0x41)

control Control L (0x43), Control R (0x46)
mod1 Alt_L (ox42), ALt R (0x45)

mod2 Meta_L (0x3f)

mod3

mod4

mod5

If mod1 does not list Alt_L and Alt_R, as shown at @, then your key map
has not been updated, in which case you should rerun the xmodmap command
listed at @ in the previous code.

Using IDA’s Batch Mode

Chapter 10

All versions of IDA can be executed in batch mode to facilitate automated
processing tasks. The primary purpose of using batch mode is to launch IDA,
have it run a specific IDC script, and have it terminate once the script com-

pletes. Several command-line options are available to control the processing
performed during batch mode execution.

GUI versions of IDA do not require a console in order to execute, mak-
ing them very easy to incorporate into virtually any type of automation script
or wrapper program. When run in batch mode, the GUI versions of IDA do
not display any graphical components. Running the Windows console ver-
sions (idaw.exe and idaw64.exe) generates a full console display that closes
automatically when the batch processing is complete. The console display
can be suppressed by redirecting output to a null device (NUL for cmd.exe,
/dev/null in cygwin), as shown here:

C:\Program Files\Ida>idaw -B some_program.exe > NUL

IDA’s batch mode is controlled by the command-line parameters
listed here:

e The -Aoption causes IDA to run in autonomous mode, which means that
no dialogs requiring user interaction will be displayed. (If you have
never clicked through IDA’s license agreement, then the license agree-
ment dialog will be displayed in spite of the presence of this switch.)

e The -c option causes IDA to delete any existing database associated with
the file specified on the command line and generate an entirely new
database.

e The -s option is used to specify which IDC script IDA should execute on
startup. To execute myscript.idc, the syntax is -Smyscript.idc (no space
between s and the script name). IDA searches for the named script in
the <IDADIR>/idc directory. If you have IDAPython properly installed,
you may also specify a python script here.

e The -B option invokes batch mode and is equivalent to supplying IDA
with -A -c -Sanalysis.idc at execution. The analysis.idc script that ships
with IDA simply waits for IDA to analyze the file named on the command
line before dumping an assembly listing (.asm file) of the disassembly and
closing IDA in order to save and close the newly generated database.

The -s option is the key to batch mode, as IDA will terminate only if the
designated script causes IDA to terminate. If the script does not shut down
IDA, then all of the options simply combine to automate the IDA startup pro-
cess. Scripting with IDC is discussed in Chapter 15.

Because of limitations with the TVision library used by the Linux and OS
X versions of IDA, batch execution must be performed withina TTY console.
This makes simple things such as output redirection and background pro-
cessing impossible. Fortunately, the latest version of TVision recognizes the
TVHEADLESS environment variable, which allows console output (stdout) to be
redirected, as shown here:

TVHEADLESS=1 ./idal -B input_file.exe > /dev/null

The Many Faces of IDA 197

198

Fully detaching from the console for background execution requires the
additional redirection of both stdin and stderr.

llIfak discusses batch mode in one of his blog posts here: http://hexblog
.com/2007/03/on_bhatch_analysis.html. Among other things, he details how to
move beyond invoking a single script and discusses how to execute an IDA
plug-in from batch mode.

Summary

Chapter 10

While GUI versions of IDA remain the most fully featured versions available,
console mode alternatives and batch-processing capabilities offer IDA users
tremendous flexibility in creating complex analysis solutions built around
IDA’s automated analysis capabilities.

At this point we have covered all of IDA’s basic capabilities, and it is time
to move on to more advanced features. Over the course of the next few
chapters we will cover some of IDA’s more useful configuration options and
present some additional utilities designed to improve IDA’s binary analysis
capabilities.

PART Il

ADVANCED IDA USAGE

CUSTOMIZING IDA

After spending some time with IDA, you
may have developed some preferred settings
that you wish to use as defaults every time
you open a new database. Some of the options
you have changed may already carry over from session

to session, while other options seem to need resetting

every time you load a new database. In this chapter we examine the various
ways in which you can modify IDA’s behavior through configuration files and
menu-accessible options. We also examine where IDA stores various configura-
tion settings and discuss the difference between database-specific settings
and global settings.

Configuration Files

Much of IDA’s default behavior is governed by settings contained in various
configuration files. For the most part, configuration files are stored in the
<IDADIR>/cfg directory, with one notable exception being the plug-ins con-
figuration file, which resides at <IDADIR>/plugins/plugins.cfg (plugins.cfg will

202

Chapter 11

be covered in Chapter 17). While you may notice quite a few files in the main
configuration directory, the majority of the files are used by processor mod-
ules and are applicable only when certain CPU types are being analyzed. The
three principal configuration files are ida.cfg, idagui.cfg, and idatui.cfg. Options
that apply to all versions of IDA are generally found in ida.cfg, while idagui.cfg
and idatui.cfg contain options specific to the GUI versions and the text-mode
versions of IDA, respectively.

The Main Configuration File: ida.cfg

IDA’s principal configuration file is ida.cfg. Early in the startup process, this
file is read to assign default processor types for various file extensions and
to tune IDA’s memory usage parameters. Once a processor type has been
specified, the file is then read a second time to process additional configura-
tion options. The options contained in ida.cfg apply to all versions of IDA
regardless of the user interface that is being used.

General options of interest in ida.cfg include memory-tuning parameters
(VPAGESIZE), whether backup files are created (CREATE_BACKUPS), and the name
of the external graph viewer (GRAPH_VISUALIZER).

Occasionally when working with very large input fields, IDA may report
that not enough memory is available to create a new database. In such cases,
increasing the VPAGESIZE and then reopening the input file is usually sufficient
to solve the problem.

A large number of options that control the format of disassembly lines
are also contained in ida.cfg, including the default values for many of the
options accessible via Options » General. These include default values for
the number of opcode bytes to display (0PCODE_BYTES), how far instructions
should be indented (INDENTATION), whether the stack pointer offset should
be displayed with each instruction (SHow_sP), and the maximum number
of cross-references to be displayed with a disassembly line (SHOW_XREFS).
Additional options control the format of disassembly lines while in graph
mode.

The global option specifying the maximum name length for named
program locations (as opposed to stack variables) is contained in ida.cfg and
is called MAX_NAMES_LENGTH. This option defaults to 15 characters and causes
IDA to generate a warning message any time you enter a name longer than
the current limit. The default length is kept small because some assemblers
cannot handle names longer than 15 characters. If you do not plan to run an
IDA-generated disassembly back through an assembler, then you may safely
increase the limit.

The list of characters allowed in user-assigned names is governed by the
NameChars options. By default this list allows alphanumeric characters and the
four special characters $2@. If IDA complains about the characters that you
wish to use when you assign new names to locations or stack variables, then
you may want to add additional characters to the NameChars set. For example,
NameChars is the option to modify if you want to make the dot (.) character
legal for use in IDA names. You should avoid the use of the semicolon,

colon, comma, and space characters within names because they may lead to
confusion, as these characters are typically considered delimiters for various
disassembly line parts.

The last two options worth mentioning influence IDA’s behavior when
parsing C header files (see Chapter 8). The ¢_HEADER_PATH option specifies a
list of directories that IDA will search to resolve #include dependencies. By
default, a common directory used by Microsoft’s Visual Studio is listed. If
you use a different compiler or if your C header files are in a honstandard
location, you should consider editing this option. The C_PREDEFINED_MACROS
option can be used to specify a default list of preprocessor macros that IDA
will incorporate regardless of whether IDA has encountered them while pars-
ing a C header file. This option offers a limited workaround facility for deal-
ing with macros that may be defined in header files to which you do not have
access.

The second half of ida.cfg contains options specific to various processor
modules. The only documentation available for options in this section of the
file comes in the form of the comments (if any) associated with each option.
The processor-specific options specified in ida.cfg generally dictate the
default settings in the Processor options section of IDA’s initial file-loading
dialog.

The last step in processing ida.cfg is to search for a file named <IDADIR>/
cfg/idauser.cfg. If present,! this file is treated as an extension of ida.cfg, and any
options in the file will override corresponding options in ida.cfg. If you do
not feel comfortable editing ida.cfg, then you should create idauser.cfg and
add to it all of the options that you wish to override. In addition, idauser.cfg
offers the easiest means for transferring your customized options from one
version of IDA to another. For example, with idauser.cfg you do not need to
re-edit ida.cfg each time you upgrade your copy of IDA. Instead, simply copy
your existing idauser.cfg to your new IDA installation any time you upgrade.

The GUI Configuration File: idagui.cfg

Configuration items specific to the GUI version of IDA are located in their
own file: <IDADIR>/cfg/idagui.cfg. This file is organized into roughly three
sections: default GUI behaviors, keyboard hotkey mappings, and file exten-
sion configuration for the File » Open dialog. In this section we discuss a few
of the more interesting options. Consult idagui.cfg for the complete list of
available options, which in most cases are accompanied by comments describ-
ing their purpose.

The Windows GUI version of IDA allows a secondary help file to be spec-
ified using the HELPFILE option. Any file specified here does not replace IDA’s
primary help file. The intended purpose of this option is to provide access to
supplemental information that may apply in specific reverse engineering sit-
uations. When a supplemental help file is specified, CTRL-F1 causes IDA to
open the named file and search for a topic that matches the word under the
cursor. If no match is found, then you are taken to the help file’s index. As

1. This file does not ship with IDA. Users must generate this file on their own if they wish IDA to
find it.

Customizing IDA 203

204

NOTE

Chapter 11

an example, unless you count auto comments, IDA does not offer any help
information regarding the instruction mnemonics in a disassembly. If you
are analyzing an x86 binary, you might like to have an x86 instruction refer-
ence available on command. If you can locate a help file that happens to con-
tain topics for each x86 instruction,? then help for any instruction is only a
hotkey away. The only word of caution concerning supplemental help files

is that IDA supports only the older WinHelp-style help files (.hlp). IDA does
not support the use of compiled HTML help files (.chm) as secondary help
files.

Microsoft Windows Vista and later do not provide native support for 32-bit WinHelp
files because the WinHIp32.exe file does not ship with these operating systems. Please
refer to Microsoft Knowledge Base article 9176072 for more information.

A common question asked about using IDA is “How can | patch binaries
using IDA?” In a nutshell, the answer is “You can’t,” but we will put off dis-
cussing the details of this issue until Chapter 14. What you can do with IDA is
patch the database to modify instructions or data in almost any way you see
fit. Once we discuss scripting (Chapter 15), you will understand that modify-
ing the database is not terribly difficult. But what if you are not interested
in or not ready to learn IDA’s scripting language? IDA contains a database-
patching menu that is not shown by default. The DISPLAY PATCH_SUBMENU option
is used to show or hide IDA’s patching menu, which shows up as Edit » Patch
Program. The options available on this menu are discussed in Chapter 14.

The single-line input box at the bottom of your IDA workspace is known
as the IDA comand line. You can use the DISPLAY_COMMAND LINE option to
control whether this field is displayed or not. By default the command will
be shown. If you are tight on screen space and you don’t anticipate the need
to enter one-line scripts, then turning this feature off can help you regain a
small amount of room in your IDA display. Note that this command line does
not allow you to execute operating system commands as if you were entering
them at a command prompt.

The hotkey configuration section of idagui.cfg is used to specify mappings
between IDA actions and hotkey sequences. Hotkey reassignment is useful
in many instances, including making additional commands available via hot-
keys, changing default sequences to sequences that are easier to remember,
or changing sequences that might conflict with other sequences in use by the
operating system or your terminal application (useful primarily for the console
version of IDA).

Virtually every option that IDA makes available through menu items
or toolbar buttons is listed in this section. Unfortunately, the names of the
commands tend not to match the text used on IDA’s menus, so it may take
some effort to determine exactly which configuration file option maps to a
specific menu option. For example, the Jump » Jump to Problem command
equates to the JumpQ option (which does happen to match its hotkey: CTRL-Q)
in idagui.cfg. In addition, while many commands have matching comments to

2. Pedram Amini swears by this WinHelp32 file: http://pedram.redhive.com/openrce/opcodes.hlp.
3. See http://support.microsoft.com/kb/917607.

describe their purpose, many commands have no description at all, so you
are left to determine the behavior of a command based on its name within
the configuration file. A trick that may help you figure out what menu item
a configuration file action is associated with is to search for the action in IDA’s
help system. The results of such searches usually lead to the description of
the action’s corresponding menu item.

The following lines represent example hotkey assignments in idagui.cfg:

"Abort" = 0 // Abort IDA, don't save changes
"Quit" "Alt-X" // Quit to DOS, save changes

The first line is the hotkey assignment for IDA’s Abort command, which
in this case has no hotkey assignment. The unquoted value o indicates that
no hotkey has been assigned to a command. The second line shows the hot-
key assignment for IDA’s quit action. Hotkey sequences are specified as a
quoted string naming the key sequence. Numerous examples of hotkey
assignments exist within idagui.cfg.

The final portion of idagui.cfg associates file type descriptions with their
associated file extensions and specifies which file types will be listed in the
Files of type drop-down list within the File » Open dialog. A large number of
file types are already described in the configuration file; however, if you find
yourself frequently working with a file type that is not available, you may want
to edit the file types list to add your file type to the list. The FILE_EXTENSIONS
option describes all file associations known to IDA. The following line is an
example of a typical file type association.

CLASS _JAVA, "Java Class Files", "* cla*;*.cls"

The line contains three comma-separated components: a name for the
association (CLASS_JAVA), a description, and a filename pattern. Wildcards are
allowed in the filename pattern, and multiple patterns can be specified by
using a semicolon to separate them. A second type of file association allows
several existing associations to be grouped into a single category. For example,
the following line groups all associations whose names begin with EXE_ into a
single association named EXE.

EXE, "Executable Files", EXE_*

Note that the pattern specifier in this case is not quoted. We might
define our own file association as follows:

IDA BOOK, "Ida Book Files", "*_book"

Customizing IDA 205

206

Chapter 11

We can choose any name we like for the association as long as it is not
already in use; however, simply adding a new association to the FILE_EXTENSIONS
list is not sufficient to make that association appear in the File » Open dialog.
The DEFAULT_FILE FILTER option lists the names of all associations that will
appear in the File » Open dialog. To complete the process and make our new
association available, we would need to add IDA BOOK to the DEFAULT_FILE FILTER
list.

Similar to the idauser.cfg file, the last line in idagui.cfg contains a directive to
include a file named <IDADIR>/cfg/idauserg.cfg. If you do not feel comfortable
editing idagui.cfg, then you should create idauserg.cfg and add to it all of the
options that you wish to override.

The Console Configuration File: idatui.cfg

The analog to idagui.cfg for users of the console version of IDA is <IDADIR>/
cfg/idatui.cfg. This file is very similar in layout and functionality to idagui.cfg.
Among other things, hotkey specifications are made in the exact same manner
as they are in idagui.cfg. Because the two files are so similar, we will detail only
the differences here.

First, the options DISPLAY_PATCH_SUBMENU and DISPLAY_COMMAND_LINE are
not available in the console version and are not included in idatui.cfg. The
File » Open dialog used in the console version is far simpler than the dialog
used in the GUI version, so all of the file association commands available in
idagui.cfg are missing in idatui.cfg.

On the other hand, a few options are available only for console versions
of IDA. For example, you can use the NOVICE option to have IDA start in a
beginner mode, in which it disables some of its more complex functionality
in an attempt to be easier to learn. A notable difference in novice mode is
the almost complete lack of subviews.

Console users are far more likely to rely on the use of hotkey sequences.
To facilitate the automation of common hotkey sequences, console mode
IDA provides a keyboard macro definition syntax. Several example macros
can be found in idatui.cfg; however, the ideal location to place any macros
that you develop is <IDADIR>/cfg/idausert.cfg (the console equivalent of
idauserg.cfg). A sample macro contained in the default idatui.cfg might look
like the following (in the actual idatui.cfg, this macro is commented out):

© MACRO @"Alt-H" // this sample macro jumps to "start" label
{
ng
sttt at 'r, 't
"Enter"
}

Macro definitions are introduced with the MACRO keyword @ followed by
the hotkey @ to be associated with the macro. The macro sequence itself is
specified between braces as a sequence of key name strings or characters,
which may in turn represent hotkey sequences themselves. The preceding
example macro, activated using ALT-H, opens the Jump to Address dialog
using the G hotkey, enters the label start into the dialog one character at a
time, and then closes the dialog using the ENTER key. Note that we could not
use the syntax “start” to enter the name of the symbol, as this would be taken
as the name of a hotkey and result in an error.

NOTE Macros and novice mode are not available in the GUI version of IDA.

As a final note about configuration file options, it is important to know
that if IDA encounters any errors while parsing its configuration files, it
immediately terminates with an error message that attempts to describe the
nature of the problem. It is not possible to start IDA until the error condition
has been corrected.

Additional IDA Configuration Options

IDA has a tremendous number of additional options that must be configured
through the IDA user interface. Options for formatting individual disassembly
lines were discussed in Chapter 7. Additional IDA options are accessed via
the Options menu, and in most cases, any options that you modify apply only
to the currently opened database. Values for those options are stored in the
associated database file when the database is closed. IDA’s Color (Options »
Colors) and Font (Options » Font) options are two of the exceptions to this
rule in that they are global options that, once set, remain in effect in all future
IDA sessions. For Windows versions of IDA, option values are stored in the
Windows registry under the HKEY CURRENT USER\Software\Hex-Rays\IDA registry
key. For non-Windows versions of IDA, these values are stored in your home
directory in a proprietary format file named $HOME/ . idapro/ida.reg.

Another piece of information that is saved in the registry concerns dialogs
for which you may choose the Do not display this dialog box again option.
This message occasionally appears in the form of a checkbox in the lower-
right portion of some informational message dialogs that you may not wish
to see in the future. Should you select this option, a registry value is created
under the HKEY_CURRENT USER\Software\Hex-Rays\IDA\Hidden Messages registry
key. If, at a later time, you wish to have a hidden dialog displayed once again,
you will need to delete the appropriate value under this registry key.

IDA Colors

The color of virtually every item in an IDA display can be customized via the
Options » Colors dialog shown in Figure 11-1.

Customizing IDA 207

208

Chapter 11

Disassembly I Navigation band | Debugger | Arrows | Graph | Misc|

¥ Enable colors Background colors
—Calor palettes Change color |
Di y | Selection |
(* Palette 1
™ Palette 2)
e Current line preﬁxl Highlight | Hint |
" Palette 3
" Palette 4
ILine prefix: unexplored LI
=eg000:00000000 55 MYUNK db 53h ; U : Re 3
==g000:00000001 02 MYDATA db offset MYCODE+1 : Re
=eg000: 00000001 MYCODE : o : CO
=eg000:00000001 1D+ My
=eg000: 00000001 2B+ : DA
b s
| | »

oK I Cancel | Help

Figure 11-1: The color selection dialog

The Disassembly tab controls the colors used for various parts of each line
in the disassembly window. Examples of each type of text that can appear in a
disassembly are given in the example window @. When you select an item in
the example window, the item’s type is listed at ®. Using the Change Color
button, you may assign any color you wish to any item you wish.

The color selection dialog contains tabs for assigning colors used in the
navigation band, the debugger, the jump arrows in the left margin of the text
disassembly view, and various components in the graph view. Specifically, the
Graph tab controls the coloring of graph nodes, their title bars, and the edges
that connect each node, while the Disassembly tab controls the coloring of
disassembled text in the graph view. The Misc tab allows for customizing the
colors used in IDA’s message window.

Customizing IDA Toolbars

In addition to menus and hotkeys, the GUI version of IDA offers a large
number of toolbar buttons spread across more than two dozen toolbars.
Toolbars are typically docked in the main toolbar area beneath IDA’s menu
bar. Two predefined toolbar arrangements accessible using the View »
Toolbars menu are Basic mode, which enables seven of IDA’s toolbars, and
Advanced mode, which enables every IDA toolbar. Individual toolbars can be
detached, dragged, and relocated to any location on the screen to suit your
personal taste. If you find that you have no need for a particular toolbar, you
can remove it from the display entirely via the View » Toolbars menu, which
is shown in Figure 11-2.

This menu also appears if you right-click anywhere within the docking
area of the IDA display. Turning off the Main toolbar removes all toolbars
from the docking area and is useful if you need to maximize the amount
of screen space dedicated to the disassembly window. Any changes that you
make to your toolbar arrangement are stored with the current database.

Opening a second database will restore the toolbars to the arrangement that
was in effect when the second database was last saved. Opening a new binary to
create a new database restores the toolbar arrangement based on IDA’s cur-
rent default toolbar settings.

wiew Debugger Options Windows Help

Open subviews

Graphs

To = Basic mode
[< Advanced mode
Output window T
A5 Graph Overview |: Breskpoints
(% Recent scripts Alt+Fg e

[E] Print segment registers IS S TE R
= Deb mmand:
§ Prntintermns fags e

[v Debug
= Hide [v Edit
o Unhide + Enumerations
= Hide ofl |v File
e Uinthicle ol Functions
I Delete hidden area Graph view
Setup hidden it=ms ERdc e
v 3ump
Lists
Operand type
[v search

Segments
Signature/Types
Structures/Enumerations
Structures

Tracng

Utilities.

Views

Watches

Figure 11-2: The toolbar configuration menu

If you settle on a toolbar arrangement that you happen to like and wish
to make it the default, then you should save the current desktop arrangement
as your default desktop using Windows » Save Desktop, which opens the
dialog shown in Figure 11-3.

i Save disassembly desktop 2
I my ida desktop j
™ Default

oK I Cancel | Help |

Figure 11-3: The Save Disassembly
Desktop dialog

Each time you save a desktop configuration, you are asked to supply a
name for the configuration. When the Default checkbox is selected, the
current desktop layout becomes the default for all new databases and the
desktop to which you will revert if you choose Windows » Reset desktop. To
restore the display to one of your custom desktops, select Windows » Load
Desktop and choose the named layout that you wish to load. Saving and
restoring desktops is particularly useful in situations that involve using mul-
tiple monitors with different sizes and/or resolutions (which may be com-
mon with laptops using different docking stations or when connecting
to projectors for presentations).

Customizing IDA 209

210

Summary

Chapter 11

When starting out with IDA, you may be perfectly satisfied with both its
default behaviors and its default GUI layout. As you become more comfort-
able with IDA’s basic features, you are certain to find ways to customize IDA
to your particular tastes. While there is no way to provide complete coverage
of every possible option IDA offers in a single chapter, we have attempted

to provide pointers to the principal locations in which those options may be
found. We have also attempted to highlight those options that you are most
likely to want to manipulate at some point in your IDA experience. Discover-

ing additional useful options is left as a matter of exploration for inquisitive
readers.

LIBRARY RECOGNITION USING
FLIRT SIGNATURES

At this point it is time to start moving
beyond IDA’s more obvious capabilities
and begin our exploration of what to do after
“The initial autoanalysis has been finished.”! In
this chapter we discuss techniques for recognizing
standard code sequences such as the library code con-
tained in statically linked binaries or standard initializa-
tion and helper functions inserted by compilers.

When you set out to reverse engineer any binary, the last thing that
you want to do is waste time reverse engineering library functions whose
behavior you could learn much more easily simply by reading a man page,
reading some source code, or doing a little Internet research. The challenge
presented by statically linked binaries is that they blur the distinction between
application code and library code. In a statically linked binary, entire libraries

1. IDA generates this message in the Output window when it has finished its automated
processing of a newly loaded binary.

212

are combined with application code to form a single monolithic executable
file. Fortunately for us, tools are available that enable IDA to recognize and
mark library code, allowing us to focus our attention on the unique code
within the application.

Fast Library ldentification and Recognition Technology

Fast Library Identification and Recognition Technology, better known as
FLIRT,? encompasses the set of techniques employed by IDA to identify
sequences of code as library code. At the heart of FLIRT are pattern-matching
algorithms that enable IDA to quickly determine whether a disassembled
function matches one of the many signatures known to IDA. The <IDADIR>/sig
directory contains the signature files that ship with IDA. For the most part,
these are libraries that ship with common Windows compilers, though a few
non-Windows signatures are also included.

Signature files utilize a custom format in which the bulk of the signature
data is compressed and wrapped in an IDA-specific header. In most cases,
signature filenames do not clearly indicate which library the associated sig-
natures were generated from. Depending on how they were created, signature
files may contain a library name comment that describes their contents. If we
view the first few lines of extracted ASCII content from a signature file, this
comment is often revealed. The following Unix-style command? generally
reveals the comment in the second or third line of output:

strings sigfile | head -n 3

Within IDA, there are two ways to view comments associated with signature
files. First, you can access the list of signatures that have been applied to a
binary via View » Open Subviews » Signatures. Second, the list of all signature
files is displayed as part of the manual signature application process, which is
initiated via File » Load File » FLIRT Signature File.

Applying FLIRT Signatures

Chapter 12

When a binary is first opened, IDA attempts to apply special signature files,
designated as startup signatures, to the entry point of the binary. It turns
out that the entry point code generated by various compilers is sufficiently
unique that matching entry point signatures is a useful technique for iden-
tifying the compiler that may have been used to generate a given binary.

2. See http://www.hex-rays.com/idapro/flirt.ntm.

3. The strings command was discussed in Chapter 2, while the head command is used to view
only the first few lines (three in the example) of its input source.

MAIN VS. _START

Recall that a program’s entry point is the address of the first instruction that will be
executed. Many longtime C programmers incorrectly believe that this is the address
of the function named main, when in fact it is not. The file type of the program, not
the language used to create the program, dictates the manner in which command-
line arguments are provided to a program. In order to reconcile any differences
between the way the loader presents command:-line arguments and the way the pro-
gram expects to receive them (via parameters to main, for example), some initializa-
tion code must execute prior to transferring control to main. It is this initialization that
IDA designates as the entry point of the program and labels _start.

This initialization code is also responsible for any initialization tasks that must
take place before main is allowed to run. In a C++ program, this code is responsible
for ensuring that constructors for globally declared objects are called prior to execu-
tion of main. Similarly, cleanup code is inserted that executes after main completes
in order to invoke destructors for all global objects prior to the actual termination of
the program.

If IDA identifies the compiler used to create a particular binary, then the
signature file for the corresponding compiler libraries is loaded and applied
to the remainder of the binary. The signatures that ship with IDA tend to
be related to proprietary compilers such as Microsoft Visual C++ or Borland
Delphi. The reason behind this is that a finite number of binary libraries ship
with these compilers. For open source compilers, such as GNU gcc, the binary
variations of the associated libraries are as numerous as the operating systems
the compilers ship with. For example, each version of FreeBSD ships with
a unique version of the C standard library. For optimal pattern matching,
signature files would need to be generated for each version of the library.
Consider the difficulty in collecting every variation of libc.a* that has shipped
with every version of every Linux distribution. It simply is not practical. In part,
these differences are due to changes in the library source code that result
in different compiled code, but huge differences also result from the use
of different compilation options, such as optimization settings and the use of
different compiler versions to build the library. The net result is that IDA
ships with very few signature files for open source compiler libraries. The good
news, as you shall soon see, is that Hex-Rays makes tools available that allow
you to generate your own signature files from static libraries.

So, under what circumstances might you be required to manually apply
signatures to one of your databases? Occasionally IDA properly identifies
the compiler used to build the binary but has no signatures for the related
compiler libraries. In such cases, either you will need to live without signatures,
or you will need to obtain copies of the static libraries used in the binary and
generate your own signatures. Other times, IDA may simply fail to identify
a compiler, making it impossible to determine which signatures should be

4. libc.a is the version of the C standard library used in statically linked binaries on Unix-style
systems.

Library Recognition Using FLIRT Signatures 213

214

WARNING

Chapter 12

applied to a database. This is common when analyzing obfuscated code in
which the startup routines have been sufficiently mangled to preclude com-
piler identification. The first thing to do, then, would be to de-obfuscate
the binary sufficiently before you could have any hope of matching library
signatures. We will discuss techniques for dealing with obfuscated code in
Chapter 21.

Regardless of the reason, if you wish to manually apply signatures to a
database, you do so via File » Load File » FLIRT Signature File, which opens
the signature selection dialog shown in Figure 12-1.

%i List of available library modules 1 =18 =]
File I ODﬁon;I Library name ;I
| @ msmfic2u MFC32 wWinMain detector
I @ msmfce4 MFCE4 WinMain detector
|| msmfesad MFC&4 DIMain detector
I @ msmfca4u MFCE4 wWinMain detector
| [mssdkaz SDK Windows 32bit o
|] mssdkea SDK Windows 64bit
I @ my 16grfd M5C v6.0/v7.0 &MSVC v1.0/v1.5 graphic library
|| @ mv 16mfic MFC 2.0/2.5 16bit
I myv 16rdos M5C v6.0/v7.0 &MSVC v1.0/v1.5 DOS runtime
I @ my 16rwin M5C v6.0/v7.0 &MSVC v1.0/v1.5 windows runtime -
‘ | i
OK I Cancel | Search Help
Line 1 of 142 i

Figure 12-1: FLIRT signature selection

The File column reflects the name of each .sig file in IDA’s <IDADIR>/sig
directory. Note that there is no means to specify an alternate location for .sig
files. If you ever generate your own signatures, they need to be placed into
<IDADIR>/sig along with every other .sig file. The Library name column dis-
plays the library name comment that is embedded within each file. Keep in
mind that these comments are only as descriptive as the creator of the signa-
tures (which could be you!) chooses to make them.

When a library module is selected, the signatures contained in the cor-
responding .sig file are loaded and compared against every function within
the database. Only one set of signatures may be applied at a time, so you
will need to repeat the process if you wish to apply several different signature
files to a database. When a function is found to match a signature, the func-
tion is marked as a library function, and the function is automatically renamed
according to the signature that has been matched.

Only functions named with an IDA dummy name can be automatically renamed. In

other words, if you have renamed a function, and that function is later matched by a

signature, then the function will not be renamed as a result of the match. Therefore, it
is to your benefit to apply signatures as early in your analysis process as possible.

Recall that statically linked binaries blur the distinction between applica-
tion code and library code. If you are fortunate enough to have a statically
linked binary that has not had its symbols stripped, you will at least have
useful function names (as useful as the trustworthy programmer has chosen

to create) to help you sort your way through the code. However, if the binary
has been stripped, you will have perhaps hundreds of functions, all with
IDA-generated names that fail to indicate what the function does. In both
cases, IDA will be able to identify library functions only if signatures are
available (function names in an unstripped binary do not provide IDA with
enough information to definitively identify a function as a library function).
Figure 12-2 shows the Overview Navigator for a statically linked binary.

I, < -
4 1 B Instruction W External symbol
Additional display: I -

Figure 12-2: Statically linked with no signatures

N Mavigator Scale: 1pixel = 64 bytes; Range; 080480B8-0804F 178 Library function Data

In this display, no functions have been identified as library functions, so
you may find yourself analyzing far more code than you really need to. After
application of an appropriate set of signatures, the Overview Navigator is
transformed as shown in Figure 12-3.

Mavigator Scale: 1 pixel = 64 bytes; Range; 080480B8-0804F 178 Library function Data

4 I » [l Regular function [l Unexplored

4 4 M Instruction W External symbol
Additional display: I -

Figure 12-3: Statically linked binary with signatures applied

As you can see, the Overview Navigator provides the best indication of
the effectiveness of a particular set of signatures. With a large percentage of
matched signatures, substantial portions of code will be marked as library
code and renamed accordingly. In the example in Figure 12-3, it is highly
likely that the actual application-specific code is concentrated in the far left
portion of the navigator display.

There are two points worth remembering when applying signatures.
First, signatures are useful even when working with a binary that has not
been stripped, in which case you are using signatures more to help IDA
identify library functions than to rename those functions. Second, statically
linked binaries may be composed of several separate libraries, requiring the
application of several sets of signatures in order to completely identify all
library functions. With each additional signature application, additional
portions of the Overview Navigator will be transformed to reflect the discovery
of library code. Figure 12-4 shows one such example. In this figure, you see
a binary that was statically linked with both the C standard library and the
OpenSSL® cryptographic library.

Mavigator Scale: 1 pixel = 40596 bytes; Range: 080480F4-08 1EBEA4 Library function Data

o Y | 1 I o 8

» 4 B instruction I External symbol
Additional display: Iﬁ

Figure 12-4: Static binary with first of several signatures applied

5. See http://www.openssl.org/.

Library Recognition Using FLIRT Signatures 215

216

Specifically, you see that following application of the appropriate signa-
tures for the version of OpenSSL in use in this application, IDA has marked
a small band (the lighter band toward the left edge of the address range) as
library code. Statically linked binaries are often created by taking the applica-
tion code first and then appending required libraries to create the resulting
executable. Given this picture, we can conclude that the memory space to
the right of the OpenSSL library is likely occupied by additional library code,
while the application code is most likely in the very narrow band to the left of
the OpenSSL library. If we continue to apply signatures to the binary shown
in Figure 12-4, we eventually arrive at the display of Figure 12-5.

Mavigator Scale: 1pixel = 4096 bytes; Range: 080480F4-08 1E8EA4 Library function Data
4 I ‘ ‘ I I | H H I II I I II". » I Regular function [l Unexplored
» 4 B Instruction W External symbol

Additional display: | -

Figure 12-5: Static binary following application of several signatures

In this example, we have applied signatures for libc, libcrypto, libkrh5,
libresolv, and others. In some cases we selected signatures based on strings
located within the binary; in other cases we chose signatures based on their
close relationship to other libraries already located within the binary. The
resulting display continues to show a dark band in the middle of the naviga-
tion band and a smaller dark band at the extreme left edge of the navigation
band. Further analysis is required to determine the nature of these remaining
nonlibrary portions of the binary. In this case we would learn that the wider
dark band in the middle is part of an unidentified library, while the dark
band on the left is the application code.

Creating FLIRT Signature Files

Chapter 12

As we discussed previously, it is simply impractical for IDA to ship with signa-
ture files for every static library in existence. In order to provide IDA users
with the tools and information necessary to create their own signatures, Hex-
Rays distributes the Fast Library Acquisition for Identification and Recogni-
tion (FLAIR) tool set. The FLAIR tools are made available on your IDA
distribution CD or via download from the Hex-Rays website® for authorized
customers. Like several other IDA add-ons, the FLAIR tools are distributed in
a Zip file. Hex-Rays does not necessarily release a new version of the FLAIR
tools with each version of IDA, so you should use the most recent version of
FLAIR that does not exceed your version of IDA.

Installation of the FLAIR utilities is a simple matter of extracting the
contents of the associated Zip file, though we highly recommend that you
create a dedicated flair directory as the destination because the Zip file is not
organized with a top-level directory. Inside the FLAIR distribution you will

6. The current version is flair61.zip and is available here: http://www.hex-rays.com/idapro/ida/
flair61.zip. A username and password supplied by Hex-Rays are required to access the download.

find several text files that constitute the documentation for the FLAIR tools.
Files of particular interest include these:

readme.txt
This is a top-level overview of the signature-creation process.

plb.txt
This file describes the use of the static library parser, plb.exe. Library pars-
ers are discussed in more detail in “Creating Pattern Files” on page 219.

pat.txt
This file details the format of pattern files, which represent the first
step in the signature-creation process. Pattern files are also described
in “Creating Pattern Files” on page 219.

sigmake.txt
This file describes the use of sigmake.exe for generating .sig files from
pattern files. Please refer to “Creating Signature Files” on page 221 for
more details.

Additional top-level content of interest includes the bin directory, which
contains all of the FLAIR tools executable files, and the startup directory,
which contains pattern files for common startup sequences associated with
various compilers and their associated output file types (PE, ELF, and so on).
Prior to version 6.1, the FLAIR tools area is available for Windows only; how-
ever, the resulting signature files may be used with all IDA variants (Windows,
Linux, and OS X).

Signature-Creation Overview

The basic process for creating signatures files does not seem complicated, as
it boils down to four simple-sounding steps.

1. Obtain a copy of the static library for which you wish to create a signa-
ture file.

2. Utilize one of the FLAIR parsers to create a pattern file for the library.

3. Run sigmake.exe to process the resulting pattern file and generate a
signature file.

4. Install the new signature file in IDA by copying it to <IDADIR>/sig.

Unfortunately, in practice, only the last step is as easy as it sounds. In the
following sections, we discuss the first three steps in more detail.

Identifying and Acquiring Static Libraries

The first step in the signature-generation process is to locate a copy of the
static library for which you wish to generate signatures. This can pose a bit of
a challenge for a variety of reasons. The first obstacle is to determine which
library you actually need. If the binary you are analyzing has not been stripped,

Library Recognition Using FLIRT Signatures 217

218

Chapter 12

you might be lucky enough to have actual function names available in your
disassembly, in which case an Internet search will probably provide several
pointers to likely candidates.

Stripped binaries are not quite as forthcoming regarding their origins.
Lacking function names, you may find that a good strings search may yield
sufficiently unique strings to allow for library identification, such as the follow-
ing, which is a dead giveaway:

OpenSSL 1.0.0b-fips 16 Nov 2010

Copyright notices and error strings are often sufficiently unique that
once again you can use an Internet search to narrow your candidates. If you
choose to run strings from the command line, remember to use the -a
option to force strings to scan the entire binary; otherwise you may miss
some potentially useful string data.

In the case of open source libraries, you are likely to find source code
readily available. Unfortunately, while the source code may be useful in help-
ing you understand the behavior of the binary, you cannot use it to generate
your signatures. It might be possible to use the source to build your own ver-
sion of the static library and then use that version in the signature-generation
process. However, in all likelihood, variations in the build process will result
in enough differences between the resulting library and the library you are
analyzing that any signatures you generate will not be terribly accurate.

The best option is to attempt to determine the exact origin of the binary
in question. By this we mean the exact operating system, operating system
version, and distribution (if applicable). Given this information, the best
option for creating signatures is to copy the libraries in question from an
identically configured system. Naturally, this leads to the next challenge:
Given an arbitrary binary, on what system was it created? A good first step
is to use the file utility to obtain some preliminary information about the
binary in question. In Chapter 2 we saw some sample output from file. In
several cases, this output was sufficient to provide likely candidate systems.
The following is just one example of very specific output from file:

$ file sample_file_1
sample file 1: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD),
statically linked, for FreeBSD 8.0 (800107), stripped

In this case we might head straight to a FreeBSD 8.0 system and track
down libc.a for starters. The following example is somewhat more ambiguous,
however:

$ file sample_file 2
sample file 2: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux),
statically linked, for GNU/Linux 2.6.32, stripped

We appear to have narrowed the source of the file to a Linux system,
which, given the abundance of available Linux distributions, is not saying
much. Turning to strings we find the following:

GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)

Here the search has been narrowed to Red Hat distributions (or deriv-
atives) that shipped with gcc version 4.5.1. GCC tags such as this are not
uncommon in binaries compiled using gcc, and fortunately for us, they
survive the stripping process and remain visible to strings.

Keep in mind that the file utility is not the be all and end all in file
identification. The following output demonstrates a simple case in which
file seems to know the type of the file being examined but for which the
output is rather nonspecific.

$ file sample_file_3
sample file 3: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

This example was taken from a Solaris 10 x86 system. Here again, the
strings utility might be useful in pinpointing this fact.

Creating Pattern Files

At this point you should have one or more libraries for which you wish to
create signatures. The next step is to create a pattern file for each library.
Pattern files are created using an appropriate FLAIR parser utility. Like
executable files, library files are built to various file format specifications.
FLAIR provides parsers for several popular library file formats. As detailed
in FLAIR’s readme.txt file, the following parsers can be found in FLAIR’s bin
directory:

plb.exe/plb
Parser for OMF libraries (commonly used by Borland compilers)

pcf.exe/pcf
Parser for COFF libraries (commonly used by Microsoft compilers)

pelf.exe/pelf
Parser for ELF libraries (found on many Unix systems)

ppsx.exe/ppsx
Parser for Sony PlayStation PSX libraries

ptmobj.exe/ptmobj
Parser for TriMedia libraries

pomf166.exe/pomfl66
Parser for Kiel OMF 166 object files

Library Recognition Using FLIRT Signatures 219

To create a pattern file for a given library, specify the parser that corre-
sponds to the library’s format, the name of the library you wish to parse,
and the name of the resulting pattern file that should be generated. For a
copy of libc.a from a FreeBSD 8.0 system, you might use the following:

$./pelf libc.a libc_FreeBSD80.pat
libc.a: skipped 1, total 1089

Here, the parser reports the file that was parsed (libc.a), the number of
functions that were skipped (1),” and the number of signature patterns
that were generated (1089). Each parser accepts a slightly different set of
command-line options documented only through the parser’s usage state-
ment. Executing a parser with no arguments displays the list of command-
line options accepted by that parser. The plb.txt file contains more detailed
information on the options accepted by the plb parser. This file is a good
basic source of information, since other parsers accept many of the options
it describes as well. In many cases, simply naming the library to be parsed and
the pattern file to be generated is sufficient.

A pattern file is a text file that contains, one per line, the extracted pat-
terns that represent functions within a parsed library. A few lines from the
pattern file created previously are shown here:

57568B7C240C8B742410FC8B4C2414C1E902F3A775108B4C241483E103F3A675 1E A55D 003E :0000 _memcmp
O0FBC442404740340C39031C0C3 . ¢t vetneennennennenneanecncennonnonnns 00 0000 000D :0000 _ffs
57538B7C240C8B4C2410FC31C083F90F7E1B89FAF7DA83E20389CB29D389D1F3 12 9E31 0032 :0000 _bzero

220

Chapter 12

The format of an individual pattern is described in FLAIR’s pat.txt file. In
a nutshell, the first portion of a pattern lists the initial byte sequence of the
function to a maximum of 32 bytes. Allowance is made for bytes that may vary
as a result of relocation entries. Such bytes are displayed using two dots. Dots
are also used to fill the pattern out to 64 characters® when a function is shorter
than 32 bytes (as _ffs is in the previous code). Beyond the initial 32 bytes,
additional information is recorded to provide more precision in the signature-
matching process. Additional information encoded into each pattern line
includes a CRC16° value computed over a portion of the function, the length
of the function in bytes, and a list of symbol names referenced by the function.
In general, longer functions that reference many other symbols yield more
complex pattern lines. In the file libc_FreeBSD80.pat generated previously,
some pattern lines exceed 20,000 characters in length.

7. The plb and pcf parsers may skip some functions depending on the command-line options
supplied to the parsers and the structure of the library being parsed.

8. At two characters per byte, 64 hexadecimal characters are required to display the contents of
32 bytes.

9. This is a 16-bit cyclic redundancy check value. The CRC16 implementation utilized for
pattern generation is included with the FLAIR tool distribution in the file crc16.cpp.

NOTE

Several third-party programmers have created utilities designed to gen-
erate patterns from existing IDA databases. One such utility is IDB_2_PAT,°
an IDA plug-in written by J.C. Roberts that is capable of generating patterns
for one or more functions in an existing database. Utilities such as these are
useful if you expect to encounter similar code in additional databases and
have no access to the original library files used to create the binary being
analyzed.

Creating Signature Files

Once you have created a pattern file for a given library, the next step in the
signature-creation process is to generate a .sig file suitable for use with IDA.
The format of an IDA signature file is substantially different from that of a
pattern file. Signature files utilize a proprietary binary format designed both
to minimize the amount of space required to represent all of the information
present in a pattern file and to allow for efficient matching of signatures
against actual database content. A high-level description of the structure of
a signature file is available on the Hex-Rays website.™

FLAIR’s sigmake utility is used to create signature files from pattern files.
By splitting pattern generation and signature generation into two distinct
phases, the signature-generation process is completely independent of the
pattern-generation process, which allows for the use of third-party pattern
generators. In its simplest form, signature generation takes place by using
sigmake to parse a .pat file and create a .sig file, as shown here:

$./sigmake libssl.pat libssl.sig

If all goes well, a .sig file is generated and ready to install into <IDADIR>/
sig. However, the process seldom runs that smoothly.

The sigmake documentation file, sigmake.txt, recommends that signature filenames
follow the MS-DOS 8.3 name-length convention. This is not a hard-and-fast require-
ment, however. When longer filenames are used, only the first eight characters of the
base filename are displayed in the signature-selection dialog.

Signature generation is often an iterative process, as it is during this phase
when collisions must be handled. A collision occurs anytime two functions
have identical patterns. If collisions are not resolved in some manner, it is
not possible to determine which function is actually being matched during
the signature-application process. Therefore, sigmake must be able to resolve
each generated signature to exactly one function name. When this is not
possible, based on the presence of identical patterns for one or more func-
tions, sigmake refuses to generate a .sig file and instead generates an exclusions

10. See http://www.openrce.org/downloads/details/26/1DB_2_PAT.
11. See http://www.hex-rays.com/idapro/flirt.htm.

Library Recognition Using FLIRT Signatures 221

file (.exc). A more typical first pass using sigmake and a new .pat file (or set of
.pat files) might yield the following.

$./sigmake libc_FreeBSD80.pat 1libc_FreeBSD80.sig
libc_FreeBSD80.sig: modules/leaves: 1088/1024, COLLISIONS: 10
See the documentation to learn how to resolve collisions.

The documentation being referred to is sigmake.txt, which describes the
use of sigmake and the collision-resolution process. In reality, each time sigmake
is executed, it searches for a corresponding exclusions file that might contain
information on how to resolve any collisions that sigmake may encounter while
processing the named pattern file. In the absence of such an exclusions file,
and when collisions occur, sigmake generates such an exclusions file rather
than a signature file. In the previous example, we would find a newly created
file named libc_FreeBSD80.exc. When first created, exclusions files are text files
that detail the conflicts that sigmake encountered while processing the pattern
file. The exclusions file must be edited to provide sigmake with guidance as to
how it should resolve the conflicting patterns. The general process for editing
an exclusions file follows.

When generated by sigmake, all exclusions files begin with the following
lines:

R e (delete these lines to allow sigmake to read this file)
; add '+' at the start of a line to select a module

; add '-' if you are not sure about the selection

; do nothing if you want to exclude all modules

The intent of these lines it to remind you what to do to resolve collisions
before you can successfully generate signatures. The most important thing to
do is delete the four lines that begin with semicolons, or sigmake will fail to
parse the exclusions file during subsequent execution. The next step is to
inform sigmake of your desire for collision resolution. A few lines extracted
from libc_FreeBSD80.exc appear here:

_index 00 0000
_strchr 00 0000
_rindex 00 0000
_strrchr 00 0000
_flsl 01 EF04
_fls 01 EF04

538B4424088A4C240C908A1838D974074084DB75F531C05BC3 . cvvvvnnnnn
538B4424088A4C240C908A1838D974074084DB75F531C05BC3....vvunnnnts.
538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3.t
538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3.
5531D289E58B450885C0741183F801B201740AD1E883C20183F80175F65D89D0
5531D289E58B450885C0741183F801B201740AD1E883C20183F80175F65D89D0

222 Chapter 12

These lines detail three separate collisions. In this case, we are being told
that the function index is indistinguishable from strchr, rindex has the same
signature as strrchr, and f1sl collides with f1s. If you are familiar with any of
these functions, this result may not surprise you, as the colliding functions are
essentially identical (for example, index and strchr perform the same action).

In order to leave you in control of your own destiny, sigmake expects you
to designate no more than one function in each group as the proper function
for the associated signature. You select a function by prefixing the name with
a plus character (+) if you want the name applied anytime the corresponding
signature is matched in a database or a minus character (-) if you simply want
a comment added to the database whenever the corresponding signature is
matched. If you do not want any names applied when the corresponding
signature is matched in a database, then you do not add any characters. The
following listing represents one possible way to provide a valid resolution for
the three collisions noted previously:

+_index 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3. v v vvnnnnnnnn.
_strchr 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3 .. vvuueennn..
_rindex 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
_strrchr 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
_flsl 01 EF04 5531D289E58B450885C0741183F801B201740AD1E883C20183F80175F65D89D0
- _fls 01 EF04 5531D289E58B450885C0741183F801B201740AD1E883C20183F80175F65D89D0

In this case we elect to use the name index whenever the first signature is
matched, do nothing at all when the second signature is matched, and have
a comment about f1s added when the third signature is matched. The fol-
lowing points are useful when attempting to resolve collisions:

1. To perform minimal collision resolution, simply delete the four com-
mented lines at the beginning of the exclusions file.

2. Never add a +/- to more than one function in a collision group.

3. If acollision group contains only a single function, do not add a +/- in
front of that function; simply leave it alone.

4. Subsequent failures of sigmake cause data, including comment lines, to
be appended to any existing exclusions file. This extra data should be
removed and the original data corrected (if the data was correct, sigmake
would not have failed a second time) before rerunning sigmake.

Once you have made appropriate changes to your exclusions file, you
must save the file and rerun sigmake using the same command-line arguments
that you used initially. The second time through, sigmake should locate, and
abide by, your exclusions file, resulting in the successful generation of a .sig
file. Successful operation of sigmake is noted by the lack of error messages and
the presence of a .sig file, as shown here:

$./sigmake libc_FreeBSD80.pat libc_FreeBSD80.sig

After a signature file has been successfully generated, you make it available
to IDA by copying it to your <IDADIR>/sig directory. Then your new signatures
are available using File » Load File » FLIRT Signature File.

Library Recognition Using FLIRT Signatures 223

Note that we have purposefully glossed over all of the options that can be
supplied to both the pattern generators and sigmake. A rundown of available
options is provided in plb.txt and sigmake.txt. The only option we will make
note of is the -n option used with sigmake. This option allows you to embed a
descriptive name inside a generated signature file. This name is displayed
during the signature-selection process (see Figure 12-1), and it can be very
helpful when sorting through the list of available signatures. The following
command line embeds the name string “FreeBSD 8.0 C standard library”
within the generated signature file:

$./sigmake -n"FreeBSD 8.0 C standard library" libc_FreeBSD80.pat libc_FreeBSD80.sig

224

Chapter 12

As an alternative, library names can be specified using directives within
exclusion files. However, since exclusion files may not be required in all
signature-generation cases, the command-line option is generally more use-
ful. For further details, please refer to sigmake.txt.

Startup Signatures

IDA also recognizes a specialized form of signatures called startup signatures.
Startup signatures are applied when a binary is first loaded into a database in
an attempt to identify the compiler that was used to create the binary. If IDA
can identify the compiler used to build a binary, then additional signature
files, associated with the identified compiler, are automatically loaded during
the initial analysis of the binary.

Given that the compiler type is initially unknown when a file is first loaded,
startup signatures are grouped by and selected according to the file type of
the binary being loaded. For example, if a Windows PE binary is being loaded,
then startup signatures specific to PE binaries are loaded in an effort to
determine the compiler used to build the PE binary in question.

In order to generate startup signatures, sigmake processes patterns that
describe the startup routine!? generated by various compilers and groups
the resulting signatures into a single type-specific signature file. The startup
directory in the FLAIR distribution contains the startup patterns used by
IDA, along with the script, startup.bat, used to create the corresponding
startup signatures from those patterns. Refer to startup.bat for examples of
using sigmake to create startup signatures for a specific file format.

In the case of PE files, you would notice several pe_*.pat files in the startup
directory that describe startup patterns used by several popular Windows
compilers, including pe_vc.pat for Visual Studio patterns and pe_gcc.pat for
Cygwin/gcc patterns. If you wish to add additional startup patterns for PE
files, you would need to add them to one of the existing PE pattern files or
create a new pattern file with a pe_ prefix in order for the startup signature-
generation script to properly find your patterns and incorporate them into
the newly generated PE signatures.

12. The startup routine is generally designated as the program’s entry point. In a C/C++
program, the purpose of the startup routine is to initialize the program’s environment prior to
passing control to the main function.

One last note about startup patterns concerns their format, which unfortu-
nately is slightly different from patterns generated for library functions. The
difference lies in the fact that a startup pattern line is capable of relating the
pattern to additional sets of signatures that should also be applied if a match
against the pattern is made. Other than the example startup patterns included
in the startup directory, the format of a startup pattern is not documented in
any of the text files included with FLAIR.

Summary

Automated library code identification is an essential capability that sig-
nificantly reduces the amount of time required to analyze statically linked
binaries. With its FLIRT and FLAIR capabilities, IDA makes such automated
code recognition not only possible but extensible by allowing users to create
their own library signatures from existing static libraries. Familiarity with the
signature-generation process is an essential skill for anyone who expects to
encounter statically linked binaries.

Library Recognition Using FLIRT Signatures 225

EXTENDING IDA’S KNOWLEDGE

By now it should be clear that a high-quality
disassembly is much more than a list of
mnemonics and operands derived from a
sequence of bytes. In order to make a disassembly
useful, it is important to augment the disassembly with

information derived from the processing of various

API-related data such as function prototypes and standard datatypes. In
Chapter 8 we discussed IDA’s handling of data structures, including how to
access standard API data structures and how to define your own custom data
structures. In this chapter, we continue our discussion of extending IDA’s
knowledge by examining the use of IDA’s idsutils and loadint utilities.
These utilities are available on your IDA distribution CD or via download
at the Hex-Rays download site.

1. See http://www.hex-rays.com/idapro/idadown.htm. A valid IDA username and password are
required.

228

Augmenting Function Information

Chapter 13

IDA derives its knowledge of functions from two sources: type library (.til)
files and IDS utilities (.ids) files. During the initial analysis phase, IDA uses
information stored in these files to both improve the accuracy of the dis-
assembly and make the disassembly more readable. It does so by incorporating
function parameter names and types as well as comments that have been
associated with various library functions.

In Chapter 8 we discussed type library files as the mechanism by which
IDA stores the layout of complex data structures. Type library files are also
the means by which IDA records information about a function’s calling
conventions and parameter sequence. IDA uses function signature informa-
tion in several ways. First, when a binary uses shared libraries, IDA has no way
to know what calling conventions may be employed by the functions in those
libraries. In such cases, IDA attempts to match library functions against their
associated signatures in a type library file. If a matching signature is found,
IDA can understand the calling convention used by the function and make
adjustments to the stack pointer as necessary (recall that stdcall functions
perform their own stack cleanup). The second use for function signatures is
to annotate the parameters being passed to a function with comments that
denote exactly which parameter is being pushed on the stack prior to calling
the function. The amount of information present in the comment depends
on how much information was present in the function signature that IDA was
able to parse. The two signatures that follow are both legal C declarations,
though the second provides more insight into the function, as it provides
formal parameter names in addition to datatypes.

LSTATUS _stdcall RegOpenKey(HKEY, LPCTSTR, PHKEY);
LSTATUS _stdcall RegOpenKey(HKEY hKey, LPCTSTR lpSubKey, PHKEY phkResult);

IDA’s type libraries contain signature information for a large number of
common API functions, including a substantial portion of the Windows API.
A default disassembly of a call to the Reg0Openkey function is shown here:

.text:00401006 00C lea eax, [ebp+®hKey]

.text:00401009 00C push eax ©; phkResult

.text:0040100A 010 push offset @SubKey ; "Software\\Hex-Rays\\IDA"
.text:0040100F 014 push 80000001h O; hKey

.text:00401014 018 call ds :RegOpenKeyA

.text:0040101A ©00C mov [ebp+var 8], eax

Note that IDA has added comments in the right margin @, indicating
which parameter is being pushed at each instruction leading up to the
call to RegOpenKey. When formal parameter names are available in the function
signature, IDA attempts to go one step further and automatically name
variables that correspond to specific parameters. In two cases in the preceding

example @, we can see that IDA has named a local variable (hkey) and a
global variable (Subkey) based on their correspondence with formal para-
meters in the RegOpenkey prototype. If the parsed function prototype had
contained only type information and no formal parameter names, then

the comments in the preceding example would name the datatypes of the
corresponding arguments rather than the parameter names. In the case of
the 1psubkey parameter, the parameter name is not displayed as a comment
because the parameter happens to point to a global string variable, and the
content of the string is being displayed using IDA’s repeating comment
facility. Finally, note that IDA has recognized RegOpenKey as a stdcall function
and automatically adjusted the stack pointer ® as RegOpenkey would do upon
returning. All of this information is extracted from the function’s signature,
which IDA also displays as a comment within the disassembly at the
appropriate import table location, as shown in the following listing:

.idata:0040A000 ; LSTATUS _ stdcall RegOpenKeyA(HKEY hKey, LPCSTR 1lpSubKey, PHKEY phkResult)
.idata:0040A000 extrn RegOpenKeyA:dword ; CODE XREF: _main+14p
.idata:0040A000 ; DATA XREF: _main+14r

The comment displaying the function prototype comes from an IDA .til
file containing information on Windows API functions.

Under what circumstances might you wish to generate your own function
type signatures?? Whenever you encounter a binary that is linked, either
dynamically or statically, to a library for which IDA has no function prototype
information, you may want to generate type signature information for all
of the functions contained in that library in order to provide IDA with the
ability to automatically annotate your disassembly. Examples of such libraries
might include common graphics or encryption libraries that are not part of a
standard Windows distribution but that might be in widespread use. The
OpenSSL cryptographic library is one example of such a library.

Just as we were able to add complex datatype information to a database’s
local .til file in Chapter 8, we can add function prototype information to that
same .til file by having IDA parse one or more function prototypes via File »
Load File » Parse C Header File. Similarly, you may use tilib.exe (see Chapter 8)
to parse header files and create standalone .til files, which can be made glo-
bally available by copying them into <IDADIR>/til.

This is all well and good when you happen to have access to source code
that you then allow IDA (or tilib.exe)to parse on your behalf. Unfortunately,
more often than you would like, you will have no access to source code, yet
you will want the same high-quality disassembly. How can you go about edu-
cating IDA if you have no source code for it to consume? This is the precisely
the purpose of the IDS utilities, or idsutils. The IDS utilities are a set of three
utility programs used to create .ids files. We first discuss what a .ids file is and
then turn our attention to creating our own .ids files.

2. In this case we are using the term signature to refer to a function’s parameter type(s), quantity,
and sequence rather than a pattern of code to match the compiled function.

Extending IDA’s Knowledge 229

230

Chapter 13

MANUALLY OVERRIDING PURGED BYTES

Library functions that make use of the stdcall calling convention can wreak havoc
with IDA’s stack-pointer analysis. Lacking any type library or .ids file information, IDA
has no way of knowing whether an imported function uses the stdcall convention.
This is significant, as IDA may not be able to properly track the behavior of the stack
pointer across calls to functions for which it has no calling convention information.
Beyond knowing that a function utilizes stdcall, IDA must also know exactly how
many bytes the function removes from the stack when the function completes. Lacking
information on calling conventions, IDA attempts to automatically determine whether
a function utilizes stdcall using a mathematical analysis technique known as the
simplex method.* Alternatively, users may intervene manually to specify the number
of purged bytes themselves. Figure 13-1 shows a specialized form of the function
editing dialog used for imported functions.

4 Edit imported function |

Mame of function: RegOpenkKeyA

Purged bytes I 12 'l (-1:undefined)
r Does not return

OK I Cancel |

Figure 13-1: Editing an imported function

You can access this dialog by navigating to the import table entry for a given
function and then editing the function (Edit » Functions » Edit Function, or ALT-P). Note
the limited functionality of this particular dialog (as opposed to the Edit Function dialog
of Figure 7-7). Because this is an imported function entry, IDA has no access to the
compiled body of the function and therefore no associated information regarding the
structure of the function’s stack frame and no direct evidence that the function uses
the stdcall convention. Lacking such information, IDA sets the Purged bytes field to
-1, indicating that it does not know whether the function clears any bytes from the
stack upon return. To override IDA in such cases, enter the correct value for the
number of purged bytes, and IDA will incorporate the provided information into its
stack-pointer analysis wherever the associated function is called. In cases for which
IDA is aware of the behavior of the function (as in Figure 13-1), the Purged bytes
field may already be filled in. Note that this field is never filled in as a result of
simplex method analysis.

* Use of the simplex method as introduced in IDA version 5.1 is described in a blog post by
lIfak here: http://www.hexblog.com/2006/06/.

IDS Files

IDA uses .ids files to supplement its knowledge of library functions. A .ids
file describes the content of a shared library by listing every exported function
contained within the library. Information detailed for each function includes
the function’s name, its associated ordinal number,® whether the function
utilizes stdcall, and if so, how many bytes the function clears from the stack

3. An ordinal number is an integer index associated with each exported function. The use of
ordinals allows a function to be located using an integer lookup table rather than by a slower
string comparison against the function’s name.

upon return, and optional comments to be displayed when the function is
referenced within a disassembly. In practice, .ids files are actually compressed
.idt files, with .idt files containing the textual descriptions of each library
function.

When an executable file is first loaded into a database, IDA determines
which shared library files the executable depends on. For each shared library,
IDA searches for a corresponding .ids file in the <IDADIR>/ids hierarchy in
order to obtain descriptions of any library functions that the executable may
reference. It is important to understand that .ids files do not necessarily
contain function signature information. Therefore, IDA may not provide
function parameter analysis based on information contained solely in .ids
files. IDA can, however, perform accurate stack pointer accounting when a
.ids file contains correct information concerning the calling conventions
employed by functions and the number of bytes that the functions clear from
the stack. In situations where a DLL exports mangled names, IDA may be
able to infer a function’s parameter signature from the mangled name, in
which case this information becomes available when the .ids file is loaded.
We describe the syntax of .idt files in the next section. In this regard, .til files
contain more useful information with respect to disassembling function calls,
though source code is required in order to generate .til files.

Creating IDS Files

IDA’s idsutils utilities are used to create .ids files. The utilities include two
library parsers, dll2idt for extracting information from Windows DLLs and
ar2idt for extracting information from ar-style libraries. In both cases, the
output is a text .idt file containing a single line per exported function that
maps the exported function’s ordinal number to the function’s name. The
syntax for .idt files, which is very straightforward, is described in the readme.txt
file included with idsutils. The majority of lines in a .idt file are used to
describe exported functions according to the following scheme:

e An export entry begins with a positive number. This number represents
the ordinal number of the exported function.

e The ordinal number is followed by a space and then a Name directive
in the form Name=function, for example, Name=RegOpenKeyA. If the special
ordinal value zero is used, then the Name directive is used to specify the
name of the library described in the current .idt file, such as in this
example:

0 Name=advapi32.dll

e Anoptional Pascal directive may be used to specify that a function
uses the stdcall calling convention and to indicate how many bytes
the function removes from the stack upon return. Here is an example:

483 Name=RegOpenKeyA Pascal=12

Extending IDA’s Knowledge 231

232

Chapter 13

e An optional comment directive can be appended to an export entry to
specify a comment to be displayed with the function at each reference to
the function within a disassembly. A completed export entry might look
like the following:

483 Name=RegOpenKeyA Pascal=12 Comment=Open a registry key

Additional, optional directives are described in the idsutils readme.txt
file. The purpose of the idsutils parsing utilities is to automate, as much
as possible, the creation of .idt files. The first step in creating a .idt file is to
obtain a copy of the library that you wish to parse; the next step is to parse it
using the appropriate parsing utility. If we wished to create a .idt file for the
OpenSSL -related library ssleay32.dll, we would use the following command:

$./dl12idt.exe ssleay32.dll
Convert DLL to IDT file. Copyright 1997 by Yury Haron. Version 1.5
File: ssleay32.dll ... ok

Successful parsing in this case results in a file named SSLEAY32.idt.
The difference in capitalization between the input filename and the output
filename is due to the fact that dll2idt derives the name of the output file
based on information contained within the DLL itself. The first few lines of
the resulting .idt file are shown here:

ALIGNMENT 4
;DECLARATION

)
0 Name=SSLEAY32.d11

)

121 Name=BIO f ssl

173 Name=BIO_new_buffer_ssl connect
122 Name=BIO_new_ssl

174 Name=BIO_new_ssl_connect

124 Name=BIO_ssl_copy_session_id

Note that it is not possible for the parsers to determine whether a func-
tion uses stdcall and, if so, how many bytes are purged from the stack. The
addition of any Pascal or Comment directives must be performed manually using
a text editor prior to creating the final .ids file. The final steps for creating
a .ids are to use the zipids utility to compress the .idt file and then to copy the
resulting .ids file to <IDADIR>/ids.

$./zipids.exe SSLEAY32.idt
File: SSLEAY32.idt ... {219 entries [0/0/0]} packed
$ cp SSLEAY32.ids ../Ida/ids

At this point, IDA loads SSLEAY32.ids anytime a binary that links to
ssleay32.dll is loaded. If you elect not to copy your newly created .ids files into
<IDADIR>/ids, you can load them at any time via File » Load File » IDS File.

An additional step in the use of .ids files allows you to link .ids files to
specific .sig or .til files. When you choose .ids files, IDA utilizes an IDS config-
uration file named <IDADIR>/ida/idsnames. This text file contains lines to
allow for the following:

e Map ashared library name to its corresponding .ids filename. This allows
IDA to locate the correct .ids file when a shared library name does not
translate neatly to an MS-DOS-style 8.3 filename as with the following:

libc.so0.6 libc.ids +

e Map a.ids file to a .til file. In such cases, IDA automatically loads the
specified .til file whenever it loads the specified .ids file. The following
example would cause openssl.til to be loaded anytime SSLEAY32.ids is
loaded (see idsnames for syntax details):

SSLEAY32.ids SSLEAY32.1ids + openssl.til

e Map a sig file to a corresponding .ids file. In this case, IDA loads the
indicated .ids file anytime the named .sig file is applied to a disassembly.
The following line directs IDA to load SSLEAY32.ids anytime a user applies
the libssl.sig FLIRT signature:

libssl.sig SSLEAY32.1ids +

In Chapter 15 we will look at a script-oriented alternative to the library
parsers provided by idsutils, and we’ll leverage IDA’s function-analysis
capabilities to generate more descriptive .idt files.

Augmenting Predefined Comments with loadint

In Chapter 7 we covered IDA’s concept of auto comments, which, when enabled,
cause IDA to display comments describing each assembly language instruction.
Two examples of such comments are shown in the following listing:

.text:08048654 lea ecx, [esp+arg 0] ; Load Effective Address
.text:08048658 and esp, OFFFFFFFoh ; Logical AND

The source of these predefined comments is the file <IDADIR>/ida.int,
which contains comments sorted first by CPU type and second by instruction
type. When auto comments are turned on, IDA searches for comments
associated with each instruction in the disassembly and displays them in the
right margin if they are present in ida.int.

The loadint* utilities provide you with the ability to modify existing
comments or add new comments to ida.int. As with the other add-on utilities
we have discussed, loadint is documented in a readme.txt file included with the
loadint distribution. The loadint distribution also contains the predefined

4. The current version is loadint61.zip.

Extending IDA’s Knowledge 233

234

Chapter 13

comments for all of IDA’s processor modules in the form of numerous .cmt
files. Modifying existing comments is a simple matter of locating the comment
file associated with your processor of interest (for example, pc.cmt for x86),
making changes to any comments whose text you wish to modify, running
loadint to re-create the ida.int comment file, and finally copying the resulting
ida.int file into your main IDA directory, where it will be loaded the next time
IDA is launched. A simple run to rebuild the comment database looks like
the following:

$./loadint comment.cmt ida.int
Comment base loader. Version 2.04. Copyright (c) 1991-2011 Hex-Rays

17566 cases, 17033 strings, total length: 580575

Examples of changes that you might wish to make include modifying exist-
ing comments or enabling comments for instructions that have no assigned
comment. In the pc.cmt file, for example, several of the more common instruc-
tions are commented out so as not to generate too many comments when
auto comments are enabled. The following lines, extracted from pc.cmt,
demonstrate that x86 mov instructions do not generate comments by default:

NN_I1tr: "Load Task Register"
//NN_mov: "Move Data"
NN_movsp: "Move to/from Special Registers"

Should you wish to enable comments for mov instructions, you would
uncomment the middle line and rebuild the comment database as detailed
previously.

A note buried within the documentation for loadint points out that
loadint must be able to locate the file ida.hlp, which is included with your IDA
distribution. If you receive the following error message, you should copy
ida.hlp into your loadint directory and then rerun loadint.

$./loadint comment.cmt ida.int

Comment base loader. Version 2.04. Copyright (c) 1991-2011 Hex-Rays

Can't initialize help system.

File name: 'ida.hlp', Reason: can't find file (take it from IDA distribution).

Alternatively, you may use the -n switch with loadint to specify the location
of <IDADIR», as shown in the following command line:

$./loadint -n <IDADIR> comment.cmt ida.int

The file comment.cmt serves as the master input file to the loadint process.
The syntax for this file is described in the loadint documentation. In a nutshell,
comment.cmt creates the mappings from processor types to associated comment
files. Individual processor-specific comment files in turn specify the mappings
from specific instructions to the associated comment text for each instruction.

The entire process is governed by several sets of enumerated (C-style enums)
constants that define all of the processor types (found in comment.cmt) and all
of the possible instructions for each processor (found in allins.hpp).

If you want to add predefined comments for a completely new processor
type, the process is somewhat more involved than simply changing existing
comments and is fairly closely linked to the process for creating new processor
modules (see Chapter 19). Without diving too deeply into processor modules,
providing comments for a completely new processor type requires that you
first create a new enumerated constant set (shared with your processor
module) within allins.hpp that defines one constant for each instruction in
the instruction set of interest. Second, you must create a comment file that
maps each enumerated instruction constant to its associated comment text.
Third, you must define a new constant for your processor type (again, shared
with your processor module) and create an entry in comment.cmt that maps
your processor type to its associated comment file. Once you have completed
these steps, you must run loadint to build a new comment database that
incorporates your new processor type and associated comments.

Summary

While idsutils and loadint may not seem immediately useful to you, you will
learn to appreciate their capabilities once you begin to step outside IDA’s
more common use cases. For a relatively small investment of time, the creation
of a single .ids or .til file can save you countless hours whenever you encounter
the libraries described by those files in future projects. Keep in mind that it
is not possible for IDA to ship with descriptions for every library in existence.
The intended purpose of the tools covered in this chapter is to provide you
with the flexibility to address gaps in IDA’s library coverage whenever you
stray off IDA’s beaten path.

Extending IDA’s Knowledge 235

PATCHING BINARIES AND
OTHER IDA LIMITATIONS

One of the most frequently asked questions
by new or prospective IDA users is “How
can | use IDA to patch binaries?” The simple
answer is “You can’t.” IDA’s intended purpose
Is to assist you in understanding the behavior of a binary
by offering you the best disassembly possible. IDA is not

designed to make it easy for you to modify the binaries you are examining.
Not wanting to take no for an answer, die-hard patchers often follow up with
guestions such as “What about the Edit » Patch Program menu?” and “What
is the purpose of File » Produce File » Create EXE File?” In this chapter we
discuss these apparent anomalies and see if we can’t coax IDA into helping
us, at least a little bit, with developing patches for binary program files.

238

The Infamous Patch Program Menu

Chapter 14

First mentioned in Chapter 11, the Edit » Patch Program menu is a hidden
feature in the GUI version of IDA that must be enabled by editing the
idagui.cfg configuration file (the Patch menu is available by default in
console versions of IDA). Figure 14-1 shows the options available on the
Edit » Patch Program submenu.

Operand type
Comments
Segments
Structs
Functions
Patch program
Other

Flugins

Change byte...
Change word. ..

3
3
3
3
3
3
3
3

Assemble...

Figure 14-1: The Patch Program submenu

Each of the submenu items teases you with the notion that you are going
to be able to modify the binary in potentially interesting ways. In actuality,
what these options offer are three different ways to modify the database. In
fact, these menu items, perhaps more than any others, make perfectly clear
the distinction between an IDA database and the binary file from which the
database was created. Once a database is created, IDA never references the
original binary. Given its true behavior, this menu item would be more aptly
named Patch Database.

All is not completely lost, however, as the menu options in Figure 14-1
do offer you the easiest way to observe the effect of any changes that you might
eventually make to the original binary. Later in this chapter you will learn
how to export the changes you have made and eventually use that information
to patch the original binary.

Changing Individual Database Bytes

The Edit » Patch Program » Change Byte menu option is used to edit one or
more byte values within an IDA database. Figure 14-2 shows the related byte-
editing dialog.

4 Patch Bytes i A |

Address 0x401608

File offset 0xADB

Original value 4080 3C010075F983C00150FF 35258 4040

Values |40803CDIDD?5F983CDDISDFF3SZB4D4D LI
OK I Cancel | Help |

Figure 14-2: The Patch Bytes dialog

The dialog displays 16-byte values beginning at the current cursor loca-
tion. You may change some or all of the displayed bytes, but you cannot make
changes beyond the 16th byte without closing the dialog, repositioning the
cursor to a new location farther into the database, and reopening the dialog.

Note that the dialog displays the virtual address and the file offset value for
the bytes that you are changing. This File offset value reflects the hexa-
decimal offset at which the bytes reside within the original binary file. The
fact that IDA retains the original file offset information for every byte in the
database will be useful if you do wish to develop a patch for the original binary.
Finally, regardless of the number of changes that have been made to the bytes
in the database, the Original value field of the dialog always displays the orig-
inal byte values loaded into the database. There is no automated capability
for reverting changes to their original byte values, though it is possible to
create an IDA script to perform such a task.

A better method for editing database bytes was introduced in IDA 5.5
in the form of a more capable Hex View window (see Chapter 5). With an
integrated hex-editing capability, there is little need to use IDA’s change
bytes capability.

Changing a Word in the Database

Somewhat less useful than the byte-patching capability is IDA’s word-patching
capability. Figure 14-3 shows IDA’s Patch Word dialog, which is capable of
patching only one 2-byte word at a time.

Addresss
File offset
Criginal value

Value {word) I 0x8040 x I

[o |

0x401608
0xADB
0x8040

Cancel |

Help

Figure 14-3: The Patch Word dialog

As with the byte-patching dialog, the virtual address and file offset are
displayed. An important point to remember is that the word value is dis-
played using the natural byte ordering of the underlying processor. For
example, in an x86 disassembly, words are treated as little-endian values,
while in a MIPS disassembly, words are treated as big-endian values. Keep
this in mind when entering new word values. As with the byte-patching
dialog, the Original value field always displays the initial value loaded from
the original binary file regardless of the number of times the word value may
have been modified using the word-patching dialog. As with byte editing, it
may be easier to perform your editing within IDA’s Hex View window.

Using the Assemble Dialog

Perhaps the most interesting capability accessible from the Patch Program
menu is the Assemble option (Edit » Patch Program » Assemble). Unfortu-
nately, this capability is not available for all processor types, as it relies on the
presence of an internal assembler capability within the current processor
module. For example, the x86 processor module is known to support assembly,
239

Patching Binaries and Other IDA Limitations

240

Chapter 14

while the MIPS processor module is known not to support assembly. When
an assembler is not available, you will receive an error message stating,
“Sorry, this processor module doesn’t support the assembler.”

The Assemble option allows you to enter assembly language statements
that are assembled using an internal assembler. The resulting instruction
bytes are then written to the current screen location. Figure 14-4 shows the
Assemble Instruction dialog used for instruction entry.

Previous line:
Address : 0xl .' 0x401608
Instruction I LI

oK I Cancel | Help |

Figure 14-4: The Assemble Instruction dialog

You can enter one instruction at a time into the Instruction field. The
assembler component for IDA’s x86 processor module accepts the same
syntax used in x86 disassembly listings. When you click OK (or press ENTER),
your instruction is assembled, and the corresponding instruction bytes are
entered into the database beginning at the virtual address displayed in the
Address field. The internal IDA assembler allows you to use symbolic names
within your instructions as long as those names exist within the program.
Syntax such as mov [ebp+var 4], eax and call sub_ 401896 is perfectly legal,
and the assembler will correctly resolve symbolic references.

Following entry of an instruction, the dialog remains open and ready to
accept a new instruction at the virtual address immediately following the
previously entered instruction. While you enter additional instructions, the
dialog displays the previous instruction entered in the Previous line field.

When entering new instructions, you must pay attention to instruction
alignment, especially when the instruction that you are entering is a different
length than the instruction it is replacing. When a new instruction is shorter
than the instruction it is replacing, you need to consider what to do with the
excess bytes left over from the old instruction (inserting NOP?! instructions is
one possible option). When a new instruction is longer than the instruction
that it is replacing, IDA will overwrite as many bytes of subsequent instructions
as is required to fit the new instruction. This may or may not be the behavior
you want, which is why careful planning is necessary before using the assembler
to modify program bytes. One way to view the assembler is as a word processor
that is stuck in overwrite mode. There is no easy way to open up space to
insert new instructions without overwriting existing instructions.

It is important to remember that IDA’s database-patching capabilities
are limited to small, simple patches that easily fit into existing space within
the database. If you have a patch that requires substantial additional space,
you will need to locate space that is allocated within the original binary but
not used by the binary. Such space is often present in the form of padding,

1. NOP stands for no operation and is an instruction often used simply to fill in space in a program.

inserted by compilers to align sections of a binary to particular file boundaries.
For example, in many Windows PE files, individual program sections must
begin at file offsets that are multiples of 512 bytes. When a section does not
consume an even multiple of 512 bytes of space, that section must be padded
within the file in order to maintain a 512-byte boundary for the next section.
The following lines from a disassembled PE file demonstrate this situation:

.text:0040963E
.text:00409644
.text:00409644
.text:00409644
.idata:0040A000

; [00000006 BYTES: COLLAPSED FUNCTION RtlUnwind. PRESS KEYPAD "+" TO EXPAND]
Oalign 200h
_text ends

; Section 2. (virtual address 0000A000)

In this case, IDA is using an align directive @ to indicate that the section is
padded to a 512-byte (200h) boundary beginning from address .text:00409644.
The upper end of the padding is the next multiple of 512 bytes, or .text:
00409800. The padded area is generally filled with zeros by the compiler and
stands out quite prominently in hex view. In this particular binary, there is
space within the file to insert up to 444 (Ox1BC = 409800h — 409644h) bytes
of patched program data, which would overwrite some or all of the zero
padding at the end of the .text section. You might patch a function to jump
to this area of the binary, execute the newly inserted program instructions,
and then jump back to the original function.

Note that the next section in the binary, the .idata section, does not
actually begin until address .idata:0040A000. This is a result of a memory-
(not file-) alignment restriction that requires PE sections to begin in 4Kb
(one memory page) boundaries. In theory it should be possible to inject an
additional 2,048 bytes of patched data into the memory range 00409800-0040A000.
The difficulty in doing so lies in the fact that no bytes corresponding to this
memory range are present within the disk image of the executable. In order
to use this space, we would need to perform more than a simple overwrite of
portions of the original binary file. First we would need to insert a 2,048-byte
block of data between the end of the existing .text section and the beginning
of the .idata section. Second, we would need to adjust the size of the .text
section within the PE file headers. Finally, we’d need to adjust the location of
.idata and all subsequent sections within the PE headers to reflect the fact
that all following sections are now located 2,048 bytes deeper into the file.
These changes may not sound terribly complicated, but they require some
attention to detail and a good working knowledge of the PE file format.

IDA Output Files and Patch Generation

One of the more interesting menu options in IDA is the File » Produce File
menu. According to the options on this menu, IDA can generate MAP, ASM,
INC, LST, EXE, DIF, and HTML files. Many of these sound intriguing, so
each is described in the following sections.

Patching Binaries and Other IDA Limitations 241

242

Chapter 14

IDA-Generated MAP Files

A .map file describes the overall layout of a binary, including information about
the sections that make up the binary and the location of symbols within each
section. When generating a .map file, you are asked for the name of the file
you wish to create and the types of symbols you would like to store in the .map
file. Figure 14-5 shows the MAP file options dialog, in which you select the
information you wish to include in the .map file.

Indude in the map file:

i Segmentation information
r Dummy names

[Demangle names

™ Local names

OK I Cancel |

Figure 14-5: MAP file-
generation options

Address information in a .map file is represented using logical addresses.
A logical address describes a symbol’s location using a segment number and
a segment offset. The first few lines of a simple .map file are shown in the
following listing. In this listing we show three segments and the first two of
many symbols. The logical address of fprintf indicates that it resides at byte
offset 69h within the first (.text) segment.

Start Length Name Class
0001:00000000 000008644H .text CODE
0002:00000000 000001DD6H .rdata DATA
0003:00000000 000002B84H .data DATA
Address Publics by Value

0001:00000000 _main

0001:00000069 _fprintf

MAP files generated by IDA are compatible with Borland’s Turbo
Debugger. The principle purpose of .map files is to assist in restoring symbol
names when debugging binaries that may have been stripped.

IDA-Generated ASM Files

IDA can generate a .asm file from the current database. The general idea is
to create a file that could be run through an assembler to re-create the under-
lying binary file. IDA attempts to dump enough information, including such
things as structure layouts, to make successful assembly possible. Whether

you will be able to successfully assemble the generated .asm file depends on
a number of factors, not the least of which is whether your particular assembler
understands the syntax IDA uses.

The target assembly language syntax is determined by the Target
assembler setting found on the Analysis tab under the Options » General
menu. By default IDA generates an assembly file representing the entire
database. However, you may limit the scope of the listing by clicking and
dragging or using SHIFT-up arrow or sSHIFT-down arrow to scroll and select the
region you wish to dump. In console versions of IDA, you would utilize the
Anchor (ALT-L) command to set an anchor point at the start of a selection
region and then use the arrow keys to extend the size of the region.

IDA-Generated INC Files

An INC (include) file contains definitions of data structures and enumerated
datatypes. This is essentially a dump of the contents of the Structures windows
in a form suitable for consumption by an assembler.

IDA-Generated LST Files

An LST file is nothing more than a text file dump of the contents of the IDA
disassembly window. You can narrow the scope of the generating listing by
selecting a range of addresses to dump, as described previously for ASM files.

IDA-Generated EXE Files

While this is the most promising menu option, it unfortunately is also the
most crippled. In a nutshell, it doesn’t work for most file types, and you can
expect to receive an error message stating, “This type of output file is not
supported.”

While this would be an ideal capability for a patcher, in general it is very
difficult to regenerate executable files from an IDA database. The infor-
mation that you are presented with in an IDA database is comprised primarily
of the contents of the sections that make up the original input file. In many
cases, however, IDA does not process every section of an input file, and certain
information is lost when the file is loaded into the database, making genera-
tion of an executable from the database impossible. The simplest example of
such loss is the fact that IDA does not load the resource (.rsrc) section of PE
files by default, which makes restoration of the resource section from the
database impossible.

In other cases, IDA processes information from the original binary but
does not make it easily accessible in its original form. Examples include
symbol tables, import tables, and export tables, which would require a fair
amount of effort to properly reconstruct in order to generate a functional
executable file.

Patching Binaries and Other IDA Limitations 243

244

Chapter 14

One effort to provide an EXE-generation capability for IDA is the
pe_scripts® of Atli Mar Gudmundsson. These are a set of IDA scripts for
working with PE files. One of the scripts is titled pe_write.idc, and its goal is to
dump a working PE image out of an existing database. If you intend to patch
a PE file, the proper sequence of events for using the scripts is as follows:

1. Load the desired PE file into IDA. Make sure that you uncheck the Make
imports section option in the loader dialog.

2. Runtheincluded pe_sections.idc script to map all sections from the original
binary into the new database.

3. Make any desired changes to the database.

4. Execute the pe_write.idc script to dump the database contents to a new
PE file.

Scripting with IDC is the subject of Chapter 15.

IDA-Generated DIF Files

An IDA DIF file is a plaintext file that lists all bytes that have been modified
within an IDA database. This is the most useful file format if your goal is to
patch an original binary based on changes made to an IDA database. The
format of the file is quite simple, as shown in the example .dif file here:

This difference file is created by The Interactive Disassembler

dif_example.exe
000002F8: 83 FF
000002F9: EC 75
000002FA: 04 EC
000002FB: FF 68

The file includes a one-line header comment followed by the name of
the original binary file and then a list of bytes within the file that have changed.
Each change line specifies the file offset (not virtual address) of the changed
byte, the original value of the byte, and the current value of the byte within
the database. In this example, the database for dif_example.exe has been
modified at four locations corresponding to byte offsets ox2F8—ox2FB within
the original file. It is a trivial task to write a program to parse IDA .dif files
and apply the changes to the original binary file to generate a patched
version of the binary. One such utility is available at the companion website
for this book.?

2. See http://www.hex-rays.com/idapro/freefiles/pe_scripts.zip.
3. See http://www.idabook.com/chapter14/ida_patcher.c.

IDA-Generated HTML Files

IDA takes advantage of the markup capabilities available with HTML in order
to generate colorized disassembly listings. An IDA-generated HTML file is
essentially an LST file with HTML tags added to produce a listing that is
colored similarly to the actual IDA disassembly window. Unfortunately, the
generated HTML files do not contain any hyperlinks that would make
navigating the file any easier than if one used a standard text listing. For
example, one useful feature would be the addition of hyperlinks to all name
references, which would make following name references as simple as
following a link.

Summary

IDA is not a binary file editor. Keep that fact in mind anytime you think about
patching a binary with IDA. However, it is a particularly good tool for helping
you enter and visualize potential changes. By familiarizing yourself with IDA’s
full range of features and combining the information that IDA can generate
with appropriate scripts or external programs, binary patching easily becomes
possible.

In the coming chapters, we will cover the many ways in which IDA’s
capabilities can be extended. For anyone interested in making the most
out of IDA’s capabilities, basic scripting skills and an understanding of IDA’s
plug-in architecture are essential, as they offer you the capability to add
behaviors wherever you feel IDA is lacking.

Patching Binaries and Other IDA Limitations 245

PART IV

EXTENDING IDA’S
CAPABILITIES

IDA SCRIPTING

It is a simple fact that no application can
meet every need of every user. It is just not
possible to anticipate every potential use case
that may arise. Application developers are faced
with the choice of responding to an endless stream of

feature requests or offering users a means to solve

their own problems. IDA takes the latter approach by integrating scripting
features that allow users to exercise a tremendous amount of programmatic
control over IDA’s actions.

Potential uses for scripts are infinite and can range from simple one-
liners to full-blown programs that automate common tasks or perform com-
plex analysis functions. From an automation standpoint, IDA scripts can be
viewed as macros,* while from an analysis point of view, IDA’s scripting lan-
guages serve as the query languages that provide programmatic access to
the contents of an IDA database. IDA supports scripting using two different

1. Many applications offer facilities that allow users to record sequences of actions into a single
complex action called a macro. Replaying or triggering a macro causes the entire sequence of
recorded steps to be executed. Macros provided an easy means to automate a complex series
of actions.

250

languages. IDA’s original, embedded scripting language is named IDC, per-
haps because its syntax bears a close resemblance to C. Since the release
of IDA 5.4, integrated scripting with Python has also been supported
through the integration of the IDAPython plug-in by Gergely Erdelyi.® For
the remainder of this chapter we will cover the basics of writing and execut-
ing both IDC and Python scripts as well as some of the more useful functions
available to script authors.

Basic Script Execution

Chapter 15

Before diving into the details of either scripting language, it is useful to
understand the most common ways that scripts can be executed. Three
menu options, File » Script File, File » IDC Command, and File » Python
Command* are available to access IDA’s scripting engine. Selecting File »
Script File indicates that you wish to run a standalone script, at which point
you are presented with a file-selection dialog that lets you choose the script
to run. Each time you run a new script, the program is added to a list of
recent scripts to provide easy access to edit or rerun the script. Figure 15-1
shows the Recent Scripts window accessible via the View » Recent Scripts
menu option.

Recent scripts E #
e B L N S s e s Tt e

Insert...
Delete
Edit...

C:/Program Files,TdaPro/make_defidc

Del
Ctrl+E

Ctrl+Ins

Copy

Line 1of 2

Figure 15-1: The Recent Scripts window

Double-clicking a listed script causes the script to be executed. A pop-up,
context-sensitive menu offers options to remove a script from the list or to
open a script for editing using the editor specified under Options » General
on the Misc tab.

As an alternative to executing a standalone script file, you may elect to
open a script entry dialog using File » IDC Command or File » Python Com-
mand. Figure 15-2 shows the resulting script entry dialog (for an IDC script
in this case), which is useful in situations where you wish to execute only a
few statements but don’t want to go to the trouble of creating a standalone
script file.

2. For a comprehensive list of features introduced with each new version of IDA, visit http://
www. hex-rays.com/idapro/idanew48.htm.

3. See http://code.google.com/p/idapython/.
4. This option is only available if Python is properly installed. Refer to Chapter 3 for details.

Flease enter IDC statement(s)

Message(Hello World!'in™);

OK I Cancel | Help |

Figure 15-2: The script entry dialog

Some restrictions apply to the types of statements that you can enter in
the script dialog, but the dialog is very useful in cases where creating a full-
blown script file is overkill.

The last way to easily execute script commands is to use IDA’s command
line. The command line is available only in GUI versions of IDA, and its pres-
ence is controlled by the value of the DISPLAY_COMMAND_LINE option in <IDADIR>/
cfg/idagui.cfg. The command line has been enabled by default since IDA 5.4.
Figure 15-3 shows the command line as it appears in the lower-left corner of
the IDA workspace, beneath the output window.

Output window

IDC - Mative builtn language
Python - IDAPython plugin
IDC —I Message(Hello World!'in™);

Figure 15-3: The IDA command line

The interpreter that will be used to execute the command line is labeled
to the left of the command-line entry box. In Figure 15-3, the command line
is configured to execute IDC statements. Clicking this label opens the pop-
up menu shown in Figure 15-3, allowing either interpreter (IDC or Python)
to be associated with the command line.

Although the command line contains only a single line of text, you can
enter multiple statements by separating each statement with a semicolon.
As a convenience, the history of recent commands is accessible with the up
arrow key. If you find yourself frequently needing to execute very short
scripts, you will find the command line very useful.

With a basic ability to execute scripts under our belts, it is time to focus
on the specifics of IDA’s two available scripting languages, IDC and Python.
We begin with a description of IDA’s native scripting language, IDC, and
conclude with a discussion of IDA’s Python integration, which will rely
heavily on the foundation built by the IDC sections that follow.

IDA Scripting 251

252

The IDC Language

Chapter 15

Unlike for some other aspects of IDA, a reasonable amount of help is avail-
able for the IDC language in IDA’s help system. Topics available at the top
level of the help system include IDC language, which covers the basics of IDC
syntax, and Index of IDC functions, which provides an exhaustive list of built-in
functions available to IDC programmers.

IDC is a scripting language that borrows most of its syntactic elements
from C. Beginning with IDA 5.6, IDC actually takes on more of the flavor of
C++ with the introduction of object-oriented features and exception handling.
Because of its similarity to C and C++, we will describe IDC in terms of these
languages and focus primarily on where IDC differs.

IDC Variables

IDC is a loosely typed language, meaning that variables have no explicit type.
The three primary datatypes used in IDC are integers (IDA documentation
uses the type name long), strings, and floating point values, with the over-
whelming majority of operations taking place on integers and strings. Strings
are treated as a native datatype in IDC, and there is no need to keep track of
the space required to store a string or whether a string is null terminated or
not. Beginning with IDA 5.6, IDC incorporates a number of additional vari-
able types, including objects, references, and function pointers.

All variables must be declared prior to their use. IDC supports local vari-
ables and, since IDA 5.4, global variables as well. The IDC keyword auto is
used to introduce a local variable declaration, and local variable declarations
may include initial values. The following examples show legal IDC local vari-
able declarations:

auto addr, reg, val; // legal, multiple variables declared with no initializers
auto count = 0; // declaration with initialization

IDC recognizes C-style multiline comments using /* */ and C++-style
line-terminating comments using //. Also, note that several variables may be
declared in a single statement and that all statements in IDC are terminated
using a semicolon (as in C). IDC does not support C-style arrays (slices are
introduced in IDA 5.6), pointers (though references are supported begin-
ning with IDA 5.6), or complex datatypes such as structs and unions. Classes
are introduced in IDA 5.6.

Global variable declarations are introduced using the extern keyword,
and their declarations are legal both inside and outside of any function
definition. It is not legal to provide an initial value when a global variable is
declared. The following listing shows the declaration of two global variables.

extern outsideGlobal;

static main() {
extern insideGlobal;
outsideGlobal = "Global";
insideGlobal = 1;

}

Global variables are allocated the first time they are encountered during
an IDA session and persist as long as that session remains active, regardless of
the number of databases that you may open and close.

IDC Expressions

With a few exceptions, IDC supports virtually all of the arithmetic and logical
operators available in C, including the ternary operator (? :). Compound
assignment operators of the form op= (+=, *=, >>=, and the like) are not sup-
ported. The comma operator is supported beginning with IDA 5.6. All inte-
ger operands are treated as signed values. This affects integer comparisons
(which are always signed) and the right-shift operator (>>), which always per-
forms an arithmetic shift with sign bit replication. If you require logical right
shifts, you must implement them yourself by masking off the top bit of the
result, as shown here:

result = (x »> 1) & ox7fffffff; //set most significant bit to zero

Because strings are a native type in IDC, some operations on strings take
on a different meaning than they might in C. The assignment of a string
operand into a string variable results in a string copy operation; thus there is
no need for string copying or duplicating functions such as C’s strcpy and
strdup. Also, the addition of two string operands results in the concatenation
of the two operands; thus “Hello” + “World” yields “HelloWorld”; there is no
need for a concatenation function such as C’s strcat. Starting with IDA 5.6,
IDC offers a slice operator for use with strings. Python programmers will be
familiar with slices, which basically allow you to specify subsequences of array-
like variables. Slices are specified using square brackets and a start (inclusive)
and end (exclusive) index. At least one index is required. The following list-
ing demonstrates the use of IDC slices.

auto
auto
sl =
S2 =
s3 =
s4 =

str = "String to slice";
sl, s2, s3, s4;

str[7:9];
str[:6];
str[10:];
str[5];

// "to"
// "String", omitting start index starts at 0

// "slice", omitting end index goes to end of string

// "g", single element slice, similar to array element access

Note that while there are no array datatypes available in IDC, the slice
operator effectively allows you to treat IDC strings as if they were arrays.

IDA Scripting 253

254

Chapter 15

IDC Statements

As in C, all simple statements are terminated with a semicolon. The only C-
style compound statement that IDC does not support is the switch statement.
When using for loops, keep in mind that IDC does not support compound
assignment operators, which may affect you if you wish to count by anything
other than one, as shown here:

auto 1i;
for (i =0; i< 10; i +=2) {} // illegal, += is not supported
for (i =0; i<120; 1=1+2){} // legal

With IDA 5.6, IDC introduces try/catch blocks and the associated throw
statement, which are syntactically similar to C++ exceptions.® IDA’s built-in
help contains specifics on IDC’s exception-handling implementation.

For compound statements, IDC utilizes the same bracing ({}) syntax and
semantics as C. Within a braced block, it is permissible to declare new variables
as long as the variable declarations are the first statements within the block.
However, IDC does not rigorously enforce the scope of the newly introduced
variables, because such variables may be referenced beyond the block in which
they were declared. Consider the following example:

if (1) { //always true
auto x;
X = 10;
}
else { //never executes
auto y;
y = 3;
}
Message("x = %d\n", x); // x remains accessible after its block terminates
Message("y = %d\n", y); // IDC allows this even though the else did not execute

The output statements (the Message function is analogous to C’s printf)
will inform us that x = 10 and y = o. Given that IDC does not strictly enforce
the scope of x, it is not terribly surprising that we are allowed to print the
value of x. What is somewhat surprising is that y is accessible at all, given that
the block in which y is declared is never executed. This is simply a quirk of
IDC. Note that while IDC may loosely enforce variable scoping within a func-
tion, variables declared within one function continue to remain inaccessible
in any other function.

IDC Functions

IDC supports user-defined functions in standalone programs (.idc files) only.
User-defined functions are not supported when using the IDC command dia-
log (see “Using the IDC Command Dialog” on page 255). IDC’s syntax for
declaring user-defined functions is where it differs most from C. The static

5. See http://www.cplusplus.com/doc/tutorial/exceptions/.

keyword is used to introduce a user-defined function, and the function’s
parameter list consists solely of a comma-separated list of parameter names.
The following listing details the basic structure of a user-defined function:

static my_func(x, y, z) {
//declare any local variables first
auto a, b, c;
//add statements to define the function's behavior
/...

Prior to IDA 5.6, all function parameters are strictly call-by-value. Call-by-
reference parameter passing was introduced with IDA 5.6. Interestingly,
whether a parameter is passed using call-by-value or call-by-reference is deter-
mined by the manner in which the function is called, not the manner in
which the function is declared. The unary & operator is used in a function
call (not the function declaration) to denote that an argument is being
passed by reference. The following examples show invocations of the my func
function from the previous listing making use of both call-by-value and call-
by-reference parameter passing.

autogq=0, r=1, s = 2;

my func(q, r, s);

//all three arguments passed using call-by-value
//upon return, q, r, and s hold 0, 1, and 2 respectively

my_func(q, 8r, s); //q and s passed call-by-value, r is passed call-by-reference

//upon return, g, and s hold 0 and 2 respectively, but r may have
//changed. In this second case, any changes that my_func makes to its
//formal parameter y will be reflected in the caller as changes to r

Function declarations never indicate whether a function explicitly returns
a value or what type of value is returned when a function does yield a result.

USING THE IDC COMMAND DIALOG

The IDC command dialog offers a simple interface for entering short sequences of
IDC code. The command dialog is a great tool for rapidly entering and testing new
scripts without the hassle of creating a standalone script file. The most important
thing to keep in mind when using the command dialog is that you must not define
any functions inside the dialog. In essence, IDA wraps your statements within a func-
tion and then calls that function in order to execute your statements. If you were to
define a function within the dialog, the net effect would be a function defined within
a function, and since nested function declarations are not allowed in IDC (or in C for
that matter), a syntax error would result.

When you wish to return a value from a function, use a return statement
to return the desired value. It is permissible to return entirely different data-
types from different paths of execution within a function. In other words, a
function may return a string in some cases, while in other cases the same

IDA Scripting 255

function may return an integer. As in C, use of a return statement within
a function is optional. However, unlike C, any function that does not explic-
itly return a value implicitly returns the value zero.

As a final note, beginning with IDA 5.6, functions take a step closer to
becoming first-class objects in IDC. It is now possible to pass function refer-
ences as arguments to other functions and return function references as the
result of a function. The following listing demonstrates the use of function
parameters and functions as return values.

static getFunc() {
return Message; //return the built-in Message function as a result

}

static useFunc(func, arg) { //func here is expected to be a function reference
func(arg);

}

static main() {

auto f = getFunc();
f("Hello World\n"); //invoke the returned function f
useFunc(f, "Print me\n"); //no need for & operator, functions always call-by-reference

}

256

Chapter 15

IDC Objects

Another feature introduced in IDA 5.6 is the ability to define classes and, as a
result, have variables that represent objects. In the discussion that follows, we
assume that you have some familiarity with an object-oriented programming
language such as C++ or Java.

IDA SCRIPTING EVOLVES

If you haven’t gotten the idea that a large number of changes to IDC were intro-
duced with IDA 5.6, then you haven’t been paying attention. Following the integra-
tion of IDAPython in IDA 5.4, Hex-Rays looked to rejuvenate IDC, resulting in many
of the features mentioned in this chapter being introduced in IDA 5.6. Along the
way, JavaScript was even contemplated as a potential addition to IDA’s scripting
lineup.*

*See http://www.hexblog.com/?p=101.

IDC defines a root class named object from which all classes ultimately
derive, and single inheritance is supported when creating new classes. IDC
does not make use of access specifiers such as public and private; all class
members are effectively public. Class declarations contain only the defini-
tions of the class’s member functions. In order to create data members
within a class, you simply create an assignment statement that assigns a
value to the data member. The following listing will help to clarify.

class ExampleClass {
ExampleClass(x, y) { //constructor

this.a = x; //all ExampleClass objects have data member a
this.b = y; //all ExampleClass objects have data member b

}

~ExampleClass() { //destructor

}

foo(x) {
this.a = this.a + x;

}

//... other member functions as desired

};

static main() {
ExampleClass ex; //DON’T DO THIS!! This is not a valid variable declaration
auto ex = ExampleClass(1, 2); //reference variables are initialized by assigning
//the result of calling the class constructor
ex.f00(10); //dot notation is used to access members
ex.z = "string"; //object ex now has a member z, BUT the class does not

}

For more information on IDC classes and their syntax, refer to the
appropriate section within IDA’s built-in help file.

IDC Programs

For any scripting applications that require more than a few IDC statements,
you are likely to want to create a standalone IDC program file. Among other
things, saving your scripts as programs gives you some measure of persistence
and portability.

IDC program files require you to make use of user-defined functions. At
a minimum, you must define a function named main that takes no arguments.
In most cases, you will also want to include the file idc.idc in order to pick up
useful macro definitions that it contains. The following listing details the
components of a minimal IDC program file:

#include <idc.idc> // useful include directive
//declare additional functions as required
static main() {
//do something fun here
}

IDC recognizes the following C-style preprocessor directives:

#include <file>
Includes the named file in the current file.

#define <name> [optional value]
Creates a macro named name and optionally assigns it the specified
value. IDC predefines a number of macros that may be used to test vari-
ous aspects of your script’s execution environment. These include NT _,

IDA Scripting 257

258

Chapter 15

LINUX, MAC_, GUI_,and TXT_among others. See the Predefined
symbols section of the IDA help file for more information on these and
other symbols.

#ifdef <name>
Tests for the existence of the named macro and optionally processes any
statements that follow if the named macro exists.

#else
Optionally used in conjunction with an #ifdef to provide an alternative
set of statements to process in the event the named macro does not exist.

#endif
This is a required terminator for an #ifdef or #ifdef/#else block.

#undef <name>
Deletes the named macro.

Error Handling in IDC

No one is ever going to praise IDC for its error-reporting capabilities. There
are two types of errors that you can expect to encounter when running IDC
scripts: parsing errors and runtime errors.

Parsing errors are those errors that prevent your program from ever being
executed and include such things as syntax errors, references to undefined
variables, and supplying an incorrect number of arguments to a function.
During the parsing phase, IDC reports only the first parsing error that it
encounters. In some cases, error messages correctly identify both the loca-
tion and the type of an error (hello world.idc,20: Missing semicolon), while
in other cases, error messages offer no real assistance (Syntax error near:
<END>). Only the first error encountered during parsing is reported. As a
result, in a script with 15 syntax errors, it may take 15 attempts at running
the script before you are informed of every error.

Runtime errors are generally encountered less frequently than parsing
errors. When encountered, runtime errors cause a script to terminate imme-
diately. One example of a runtime error results from an attempt to call an
undefined function that for some reason is not detected when the script
is initially parsed. Another problem arises with scripts that take an excessive
amount of time to execute. Once a script is started, there is no easy way to
terminate the script if it inadvertently ends up
in an infinite loop or simply takes longer to 20|
execute than you are willing to wait. Once a
script has executed for more than two to three
seconds, IDA displays the dialog shown in Fig-
ure 15-4.

This dialog is the only means by which you
can terminate a script that fails to terminate

properly.

Running IDC script

Figure 15-4: Script
cancellation dialog

NOTE

Debugging is another of IDC’s weak points. Other than liberal use of
output statements, there is no way to debug IDC scripts. With the introduc-
tion of exception handling (try/catch) in IDA 5.6, it does become possible
to build more robust scripts that can terminate or continue as gracefully as
you choose.

Persistent Data Storage in IDC

Perhaps you are the curious type who, not trusting that we would provide suf-
ficient coverage of IDA’s scripting capability, raced off to see what the IDA
help system has to say on the subject. If so, welcome back, and if not, we
appreciate you sticking with us this far. In any case, somewhere along the way
you may have acquired knowledge that claims that IDC does in fact support
arrays, in which case you must surely be questioning the quality of this book.
We urge you to give us a chance to sort out this potential confusion.

As mentioned previously, IDC does not support arrays in the traditional
sense of declaring a large block of storage and then using a subscript notation
to access individual items within that block. However, IDA’s documentation
on scripting does mention something called global persistent arrays. IDC global
arrays are better thought of as persistent named objects. The objects just happen
to be sparse arrays.® Global arrays are stored within an IDA database and are
persistent across script invocations and IDA sessions. Data is stored in global
arrays by specifying an index and a data value to be stored at the specified
index in the array. Each element in an array can simultaneously hold one
integer value and one string value. IDC’s global arrays provide no means for
storing floating point values.

For the overly curious, IDA’s internal mechanism for storing persistent arrays is called
a netnode. While the array-manipulation functions described next provide an abstracted
interface to netnodes, lower-level access to netnode data is available using the IDA
SDK, which is discussed, along with netnodes, in Chapter 16.

All interaction with global arrays occurs through the use of IDC functions
dedicated to array manipulation. Descriptions of these functions follow:

long CreateArray(string name)
This function creates a persistent object with the specified name. The
return value is an integer handle required for all future access to the
array. If the named object already exists, the return value is -1.

long GetArrayId(string name)
Once an array has been created, subsequent access to the array must be
done through an integer handle, which can be obtained by looking up
the array name. The return value for this function is an integer handle
to be used for all future interaction with the array. If the named array
does not exist, the return value is -1.

6. Sparse arrays do not necessarily preallocate space for the entire array, nor are they limited to
a particular maximum index. Instead, space for array elements is allocated on an as-needed basis
when elements are added to the array.

IDA Scripting 259

260

Chapter 15

long SetArraylLong(long id, long idx, long value)
Stores an integer value into the array referred to by id at the position
specified by idx. The return value is 1 on success or 0 on failure. The
operation will fail if the array id is invalid.

long SetArrayString(long id, long idx, string str)
Stores a string value into the array referred to by id at the position speci-
fied by idx. The return value is 1 on success or 0 on failure. The opera-
tion will fail if the array id is invalid.

string or long GetArrayElement(long tag, long id, long idx)
While there are distinct functions for storing data into an array depending
on the type of data to be stored, there is only one function for retrieving
data from an array. This function retrieves either an integer or a string
value from the specified index (idx) in the specified array (id). Whether
an integer or a string is retrieved is determined by the value of the tag
parameter, which must be one of the constants AR_LONG (to retrieve an
integer) or AR_STR (to retrieve a string).

long DelArrayElement(long tag, long id, long idx)
Deletes the contents of the specified array location from the specified
array. The value of tag determines whether the integer value or string
value associated with the specified index is deleted.

void DeleteArray(long id)
Deletes the array referenced by id and all of its associated contents. Once
an array has been created, it continues to exist, even after a script termi-
nates, until a call is made to DeleteArray to remove the array from the
database in which it was created.

long RenameArray(long id, string newname)
Renames the array referenced by id to newname. Returns 1 if successful or
0 if the operation fails.

Possible uses for global arrays include approximating global variables,
approximating complex datatypes, and providing persistent storage across
script invocations. Global variables for a script are simulated by creating a
global array when the script begins and storing global values in the array.
These global values are shared either by passing the array handle to func-
tions requiring access to the values or by requiring any function that requires
access to perform a name lookup for the desired array.

Values stored in an IDC global array persist for the lifetime of the data-
base in which the script was executed. You may test for the existence of an
array by examining the return value of the CreateArray function. If the values
stored in an array are applicable only to a specific invocation of a script, then
the array should be deleted before the script terminates. Deleting the array
ensures that no global values carry over from one execution of a script to a
subsequent execution of the same script.

Associating IDC Scripts with Hotkeys

Occasionally you may develop a script so amazing in its utility that you must
have access to it with a keystroke or two. When this happens, you will want to
assign a hotkey sequence that you can use to quickly activate your script. For-
tunately IDA provides a simple means to do this. Every time IDA is launched,
the script contained in <IDADIR>/idc/ida.idc is executed. The default version
of this script contains an empty main function and thus does nothing. To asso-
ciate a hotkey with one of your scripts, you need to add two lines to ida.idc.
The first line you must add is an include directive to include your script file
in ida.idc. The second line you must add is a call, within main, to the AddHotkey
function to associate a specific hotkey with your amazing IDC function. This
might leave ida.idc looking like this:

#include <idc.idc>
#include <my_amazing script.idc>
static main() {
AddHotkey("z", "MyAmazingFunc"); //Now 'z' invokes MyAmazingFunc
}

If the hotkey you are attempting to associate with your script has already
been assigned to another IDA action (menu hotkey or plug-in activation
sequence), AddHotkey silently fails with no way to detect the failure other
than the fact that your function fails to execute when your hotkey sequence
is activated.

Two important points here are that the standard include directory for
IDC scripts is <IDADIR>/idc and that you must not name your script function
main. If you want IDA to find your script easily, you can copy it into <IDADIR>/
idc. If you intend to leave your script file in another location, then you will
need to specify the full path to your script in the include statement. While
testing your script, it will be useful to run your script as a standalone program
with a main function. Once you are ready to associate your script with a hot-
key, however, you cannot use the name main, because it will conflict with the
main function in ida.idc. You must rename your main function and use the new
name in the call to AddHotkey.

Useful IDC Functions

At this point, you have all the information required to write well-formed IDC
scripts. What you are lacking is the ability to perform any useful interaction
with IDA itself. IDC provides a long list of built-in functions that offer many
different ways to access a database. All of the functions are documented to
some degree in the IDA help system under the topic Index of IDC functions.
In most cases, the documentation is nothing more than relevant lines copied
from the main IDC include file, idc.idc. Becoming comfortable with the rather
terse documentation is one of the more frustrating aspects of learning IDC.
In general, there is no easy way to answer the question “How do | do x in
IDC?” The most common way to figure out how to do something is to browse

IDA Scripting 261

262

Chapter 15

the list of IDC functions looking for one that, based on its name, appears to
do what you need. This presumes, of course, that the functions are named
according to their purpose, but their purpose may not always be obvious. For
example, in many cases, functions that retrieve information from the data-
base are named Getxxx; however; in many other cases, the Get prefix is not used.
Functions that change the database may be named SetXxx, MakexxX, or some-
thing else entirely. In summary, if you want to use IDC, get used to browsing
the list of functions and reading through their descriptions. If you find your-
self at a complete loss, don’t be afraid to use the support forums at Hex-Rays.’
The intent of the remainder of this section is to point out some of the
more useful (in our experience) IDC functions and group them into func-
tional areas. Even if you intend to script in Python only, familiarity with the
listed functions will be useful to you because IDAPython provides Python
equivalents to each function listed here. We make no attempt to cover every
IDC function, however, since they are already covered in the IDA help system.

Functions for Reading and Modifying Data

The following functions provide access to individual bytes, words, and double
words in a database:

long Byte(long addr)
Reads a byte value from virtual address addr.

long Word(long addr)
Reads a word (2-byte) value from virtual address addr.

long Dword(long addr)
Reads a double word (4-byte) value from virtual address addr.

void PatchByte(long addr, long val)
Sets a byte value at virtual address addr.

void PatchWord(long addr, long val)
Sets a word value at virtual address addr.

void PatchDword(long addr, long val)
Sets a double word value at virtual address addr.

bool isLoaded(long addr)
Returns 1 if addr contains valid data, 0 otherwise.

Each of these functions takes the byte ordering (little-endian or big-
endian) of the current processor module into account when reading and
writing the database. The Patchxxx functions also trim the supplied value
to an appropriate size by using only the proper number of low-order bytes
according to the function called. For example, a call to PatchByte(0x401010,
ox1234) will patch location ox401010 with the byte value ox34 (the low-order
byte of ox1234). If an invalid address is supplied while reading the database
with Byte, Word, and Dword, the values oxFF, oxFFFF, and oxFFFFFFFF will be
returned, respectively. Because there is no way to distinguish these error

7. The support forum is currently located at http://www.hex-rays.com/forum/.

values from legitimate data stored in the database, you may wish to call
isLoaded to determine whether an address in the database contains any
data prior to attempting to read from that address.

Because of a quirk in refreshing IDA’s disassembly view, you may find
that the results of a patch operation are not immediately visible. In such
cases, scrolling away from the patched location and then scrolling back to
the patched location generally forces the display to be updated properly.

User Interaction Functions

In order to perform any user interaction at all, you will need to familiarize
yourself with IDC input/output functions. The following list summarizes
some of IDC’s more useful interface functions:

void Message(string format, ...)
Prints a formatted message to the output window. This function is analo-
gous to C’s printf function and accepts a printf-style format string.

void print(...)
Prints the string representation of each argument to the output window.

void Warning(string format, ...)
Displays a formatted message in a dialog.

string AskStr(string default, string prompt)
Displays an input dialog asking the user to enter a string value. Returns
the user’s string or 0 if the dialog was canceled.

string AskFile(long doSave, string mask, string prompt)
Displays a file-selection dialog to simplify the task of choosing a file. New
files may be created for saving data (doSave = 1), or existing files may be
chosen for reading data (doSave = 0). The displayed list of files may be fil-
tered according to mask (such as *.* or *.idc). Returns the name of the
selected file or O if the dialog was canceled.

long AskYN(long default, string prompt)
Prompts the user with a yes or no question, highlighting a default answer
(1 =yes, 0 =no, -1 = cancel). Returns an integer representing the selected
answer.

long ScreenEA()
Returns the virtual address of the current cursor location.

bool Jump(long addr)
Jumps the disassembly window to the specified address.

Because IDC lacks any debugging facilities, you may find yourself using
the Message function as your primary debugging tool. Several other Askxxx
functions exist to handle more specialized input cases such as integer input.
Please refer to the help system documentation for a complete list of available
Askxxx functions. The screentA function is very useful for picking up the cur-
rent cursor location when you wish to create a script that tailors its behavior

IDA Scripting 263

264

Chapter 15

based on the location of the cursor. Similarly, the Jump function is useful
when you have a script that needs to call the user’s attention to a specific
location within the disassembly.

String-Manipulation Functions

Although simple string assignment and concatenation are taken care of with
basic operators in IDC, more complex operations must be performed using
available string-handling functions, some of which are detailed here:

string form(string format, ...) // pre IDA 5.6
Returns a new string formatted according to the supplied format strings
and values. This is the rough equivalent to C’s sprintf function.

string sprintf(string format, ...) // IDA 5.6+
With IDA 5.6, sprintf replaces form (see above).

long atol(string val)
Converts the decimal value val to its corresponding integer representation.

long xtol(string val)
Converts the hexadecimal value val (which may optionally begin with ox)
to its corresponding integer representation.

string 1ltoa(long val, long radix)
Returns a string representation of val in the specified radix (2, 8, 10,
or 16).

long ord(string ch)
Returns the ASCII value of the one-character string ch.

long strlen(string str)
Returns the length of the provided string.

long strstr(string str, string substr)
Returns the index of substr within str or -1 if the substring is not found.

string substr(string str, long start, long end)
Returns the substring containing the characters from start through end-1
of str. Using slices (IDA 5.6+) this function is equivalent to str[start:end].

Recall that there is no character datatype in IDC, nor is there any array
syntax. Lacking slices, if you want to iterate through the individual characters
within a string, you must take successive one-character substrings for each
character in the string.

File Input/Qutput Functions

The output window may not always be the ideal place to send the output of
your scripts. For scripts that generate a large amount of text or scripts that
generate binary data, you may wish to output to disk files instead. We have

already discussed using the AskFile function to ask a user for a filename.
However, AskFile returns only a string containing the name of a file. IDC’s
file-handling functions are detailed here:

long fopen(string filename, string mode)
Returns an integer file handle (or 0 on error) for use with all IDC file
1/0 functions. The mode parameter is similar to the modes used in C’s
fopen (z to read, w to write, and so on).

void fclose(long handle)
Closes the file specified by the file handle from fopen.

long filelength(long handle)
Returns the length of the indicated file or -1 on error.

long fgetc(long handle)
Reads a single byte from the given file. Returns -1 on error.

long fputc(long val, long handle)
Writes a single byte to the given file. Returns 0 on success or —1 on error.

long fprintf(long handle, string format, ...)
Writes a formatted string to the given file.

long writestr(long handle, string str)
Writes the specified string to the given file.

string/long readstr(long handle)
Reads a string from the given file. This function reads all characters
(including non-ASCII) up to and including the next line feed (ASCII
0xA) character. Returns the string on success or —1 on end of file.

long writelong(long handle, long val, long bigendian)
Writes a 4-byte integer to the given file using big-endian (bigendian = 1)
or little-endian (bigendian = 0) byte order.

long readlong(long handle, long bigendian)
Reads a 4-byte integer from the given file using big-endian (bigendian = 1)
or little-endian (bigendian = 0) byte order.

long writeshort(long handle, long val, long bigendian)
Writes a 2-byte integer to the given file using big-endian (bigendian = 1)
or little-endian (bigendian = 0) byte order.

long readshort(long handle, long bigendian)
Reads a 2-byte integer from the given file using big-endian (bigendian = 1)
or little-endian (bigendian = 0) byte order.

bool loadfile(long handle, long pos, long addr, long length)
Reads length number of bytes from position pos in the given file and
writes those bytes into the database beginning at address addr.

bool savefile(long handle, long pos, long addr, long length)
Writes length number of bytes beginning at database address addr to posi-
tion pos in the given file.

IDA Scripting 265

266

Chapter 15

Manipulating Database Names

The need to manipulate named locations arises fairly often in scripts. The
following IDC functions are available for working with named locations in an
IDA database:

string Name(long addr)
Returns the name associated with the given address or returns the empty
string if the location has no name. This function does not return user-
assigned names when the names are marked as local.

string NameEx(long from, long addr)
Returns the name associated with addr. Returns the empty string if the
location has no name. This function returns user-defined local names if
from is any address within a function that also contains addr.

bool MakeNameEx(long addr, string name, long flags)
Assigns the given name to the given address. The name is created with
attributes specified in the flags bitmask. These flags are described in the
help file documentation for MakeNameEx and are used to specify attributes
such as whether the name is local or public or whether it should be listed
in the names window.

long LocByName(string name)
Returns the address of the location with the given name. Returns
BADADDR (-1) if no such name exists in the database.

long LocByNameEx(long funcaddr, string localname)
Searches for the given local name within the function containing
funcaddr. Returns BADADDR (-1) if no such name exists in the
given function.

Functions Dealing with Functions

Many scripts are designed to perform analysis of functions within a database.
IDA assigns disassembled functions a number of attributes, such as the size
of the function’s local variable area or the size of the function’s arguments
on the runtime stack. The following IDC functions can be used to access
information about functions within a database.

long GetFunctionAttr(long addr, long attrib)
Returns the requested attribute for the function containing the given
address. Refer to the IDC help documentation for a list of attribute
constants. As an example, to find the ending address of a function, use
GetFunctionAttr(addr, FUNCATTR_END);.

string GetFunctionName(long addr)
Returns the name of the function that contains the given address or an
empty string if the given address does not belong to a function.

long NextFunction(long addr)
Returns the starting address of the next function following the given
address. Returns -1 if there are no more functions in the database.

long PrevFunction(long addr)
Returns the starting address of the nearest function that precedes the
given address. Returns -1 if no function precedes the given address.

Use the LocByName function to find the starting address of a function given
the function’s name.

Code Cross-Reference Functions

Cross-references were covered in Chapter 9. IDC offers functions for access-
ing cross-reference information associated with any instruction. Deciding
which functions meet the needs of your scripts can be a bit confusing. It
requires you to understand whether you are interested in following the
flows leaving a given address or whether you are interested in iterating over
all of the locations that refer to a given address. Functions for performing
both of the preceding operations are described here. Several of these func-
tions are designed to support iteration over a set of cross-references. Such
functions support the notion of a sequence of cross-references and require
a current cross-reference in order to return a next cross-reference. Examples
of using cross-reference iterators are provided in “Enumerating Cross-
References” on page 272.

long Rfirst(long from)
Returns the first location to which the given address transfers control. Re-
turns BADADDR (-1) if the given address refers to no other address.

long Rnext(long from, long current)
Returns the next location to which the given address (from) transfers
control, given that current has already been returned by a previous call
to Rfirst or Rnext. Returns BADADDR if no more cross-references exist.

long XrefType()
Returns a constant indicating the type of the last cross-reference returned
by a cross-reference lookup function such as Rfirst. For code cross-
references, these constants are f1_cN (near call), f1_cF (far call), f1_IN
(near jump), f1_JF (far jump), and f1_F (ordinary sequential flow).

long RfirstB(long to)
Returns the first location that transfers control to the given address. Re-
turns BADADDR (-1) if there are no references to the given address.

long RnextB(long to, long current)
Returns the next location that transfers control to the given address (to),
given that current has already been returned by a previous call to RfirstB
or RnextB. Returns BADADDR if no more cross-references to the given
location exist.

Each time a cross-reference function is called, an internal IDC state vari-
able is set that indicates the type of the last cross-reference that was returned.
If you need to know what type of cross-reference you have received, then you
must call XxrefType prior to calling another cross-reference lookup function.

IDA Scripting 267

268

Chapter 15

Data Cross-Reference Functions

The functions for accessing data cross-reference information are very similar
to the functions used to access code cross-reference information. These func-
tions are described here:

long Dfirst(long from)
Returns the first location to which the given address refers to a data
value. Returns BADADDR (-1) if the given address refers to no other
addresses.

long Dnext(long from, long current)
Returns the next location to which the given address (from) refers a data
value, given that current has already been returned by a previous call to
Dfirst or Dnext. Returns BADADDR if no more cross-references exist.

long XrefType()
Returns a constant indicating the type of the last cross-reference returned
by a cross-reference lookup function such as Dfirst. For data cross-
references, these constants include dr 0 (offset taken), dr_W (data write),
and dr_R (data read).

long DfirstB(long to)
Returns the first location that refers to the given address as data. Returns
BADADDR (-1) if there are no references to the given address.

long DnextB(long to, long current)
Returns the next location that refers to the given address (to) as data,
given that current has already been returned by a previous call to DfirstB
or DnextB. Returns BADADDR if no more cross-references to the given
location exist.

As with code cross-references, if you need to know what type of cross-
reference you have received, then you must call xrefType prior to calling
another cross-reference lookup function.

Database Manipulation Functions

A number of functions exist for formatting the contents of a database. Here
are descriptions of a few of these functions:

void MakeUnkn(long addr, long flags)
Undefines the item at the specified address. The flags (see the IDC docu-
mentation for MakeUnkn) dictate whether subsequent items will also be
undefined and whether any names associated with undefined items will
be deleted. Related function MakeUnknown allows you to undefine large
blocks of data.

long MakeCode(long addr)
Converts the bytes at the specified address into an instruction. Returns
the length of the instruction or 0 if the operation fails.

bool MakeByte(long addr)
Converts the item at the specified address into a data byte. MakeWord and
MakeDword are also available.

bool MakeComm(long addr, string comment)
Adds a regular comment at the given address.

bool MakeFunction(long begin, long end)
Converts the range of instructions from begin to end into a function. If end
is specified as BADADDR (-1), IDA attempts to automatically identify the
end of the function by locating the function’s return instruction.

bool MakeStr(long begin, long end)
Creates a string of the current string type (as returned by GetStringType),
spanning the bytes from begin to end - 1. If end is specified as BADADDR, IDA
attempts to automatically identify the end of the string.

Many other Makexxx functions exist that offer behavior similar to the func-
tions just described. Please refer to the IDC documentation for a full list of
these functions.

Database Search Functions

The majority of IDA’s search capabilities are accessible in IDC in the form
of various Findxxx functions, some of which are described here. The flags
parameter used in the Findxxx functions is a bitmask that specifies the behav-
ior of the find operation. Three of the more useful flags are SEARCH_DOWN,
which causes the search to scan toward higher addresses; SEARCH_NEXT, which
skips the current occurrence in order to search for the next occurrence; and
SEARCH_CASE, which causes binary and text searches to be performed in a case-
sensitive manner.

long FindCode(long addr, long flags)
Searches for an instruction from the given address.

long FindData(long addr, long flags)
Searches for a data item from the given address.

long FindBinary(long addr, long flags, string binary)
Searches for a sequence of bytes from the given address. The binary
string specifies a sequence of hexadecimal byte values. If SEARCH_CASE is
not specified and a byte value specifies an uppercase or lowercase ASCII
letter, then the search will also match corresponding, complementary
case values. For example, “41 42” will match “61 62” (and “61 42™) unless
the SEARCH_CASE flag is set.

long FindText(long addr, long flags, long row, long column, string text)
Searches for a text string from the given column on the given line (row) at
the given address. Note that the disassembly text at a given address may
span several lines, hence the need to specify on which line the search
should begin.

IDA Scripting 269

270

Also note that SEARCH_NEXT does not define the direction of search, which
may be either up or down according to the SEARCH_DouN flag. In addition,
when SEARCH_NEXT is not specified, it is perfectly reasonable for a Findxxx func-
tion to return the same address that was passed in as the addr argument when
the item at addr satisfies the search.

Disassembly Line Components

From time to time it is useful to extract the text, or portions of the text,
of individual lines in a disassembly listing. The following functions provide
access to various components of a disassembly line;

string GetDisasm(long addr)
Returns disassembly text for the given address. The returned text
includes any comments but does not include address information.

string GetMnem(long addr)
Returns the mnemonic portion of the instruction at the given address.

string GetOpnd(long addr, long opnum)
Returns the text representation of the specified operand at the specified
address. Operands are numbered from zero beginning with the leftmost
operand.

long GetOpType(long addr, long opnum)
Returns an integer representing the type for the given operand at the
given address. Refer to the IDC documentation for GetopType for a com-
plete list of operand type codes.

long GetOperandValue(long addr, long opnum)
Returns the integer value associated with the given operand at the given
address. The nature of the returned value depends on the type of the
given operand as specified by GetOpType.

string CommentEx(long addr, long type)
Returns the text of any comment present at the given address. If type is O,
the text of the regular comment is returned. If type is 1, the text of the
repeatable comment is returned. If no comment is present at the given
address, an empty string is returned.

IDC Scripting Examples

Chapter 15

At this point it is probably useful to see some examples of scripts that per-
form specific tasks. For the remainder of the chapter we present some fairly
common situations in which a script can be used to answer a question about
a database.

Enumerating Functions

Many scripts operate on individual functions. Examples include generating
the call tree rooted at a specific function, generating the control flow graph
of a function, or analyzing the stack frames of every function in a database.

o

e

Listing 15-1 iterates through every function in a database and prints basic
information about each function, including the start and end addresses of
the function, the size of the function’s arguments, and the size of the func-
tion’s local variables. All output is sent to the output window.

#include <idc.idc>
static main() {
auto addr, end, args, locals, frame, firstArg, name, ret;
addr = 0;
for (addr = NextFunction(addr); addr != BADADDR; addr = NextFunction(addr)) {
name = Name(addr);
end = GetFunctionAttr(addr, FUNCATTR_END);
locals = GetFunctionAttr(addr, FUNCATTR_FRSIZE);

frame = CetFrame(addr); // retrieve a handle to the function’s stack frame
ret = CetMemberOffset(frame, " r"); // " r" is the name of the return address
if (ret == -1) continue;

firstArg = ret + 4;
args = GetStrucSize(frame) - firstArg;
Message("Function: %s, starts at %x, ends at %x\n", name, addr, end);
Message(" Local variable area is %d bytes\n", locals);
Message(" Arguments occupy %d bytes (%d args)\n", args, args / 4);
}
}

Listing 15-1: Function enumeration script

This script uses some of IDC’s structure-manipulation functions to
obtain a handle to each function’s stack frame (GetFrame), determine the
size of the stack frame (GetStrucSize), and determine the offset of the saved
return address within the frame (GetMember0Offset). The first argument to
the function lies 4 bytes beyond the saved return address. The size of the
function’s argument area is computed as the space between the first argu-
ment and the end of the stack frame. Since IDA can’t generate stack frames
for imported functions, this script tests whether the function’s stack frame
contains a saved return address as a simple means of identifying calls to an
imported function.

Enumerating Instructions

Within a given function, you may want to enumerate every instruction. List-
ing 15-2 counts the number of instructions contained in the function identi-
fied by the current cursor position:

#include <idc.idc>
static main() {
auto func, end, count, inst;
func = GetFunctionAttr(ScreenEA(), FUNCATTR_START);
if (func != -1) {
end = GetFunctionAttr(func, FUNCATTR_END);
count = 0;
inst = func;
while (inst < end) {

IDA Scripting 271

count++;
(3] inst = FindCode(inst, SEARCH DOWN | SEARCH_NEXT);
}

Warning("%s contains %d instructions\n", Name(func), count);

else {
Warning("No function found at location %x", ScreenEA());
}

}

Listing 15-2: Instruction enumeration script

The function begins @ by using GetFunctionAttr to determine the start
address of the function containing the cursor address (ScreentA()). If the
beginning of a function is found, the next step @ is to determine the end
address for the function, once again using the GetFunctionAttr function.
Once the function has been bounded, a loop is executed to step through
successive instructions in the function by using the search functionality of
the FindCode function . In this example, the Warning function is used to dis-
play results, since only a single line of output will be generated by the func-
tion and output displayed in a Warning dialog is much more obvious than
output generated in the message window. Note that this example assumes
that all of the instructions within the given function are contiguous. An alter-
native approach might replace the use of FindCode with logic to iterate over
all of the code cross-references for each instruction within the function.
Properly written, this second approach would handle noncontiguous, also
known as “chunked,” functions.

Enumerating Cross-References

Iterating through cross-references can be confusing because of the number
of functions available for accessing cross-reference data and the fact that
code cross-references are bidirectional. In order to get the data you want,
you need to make sure you are accessing the proper type of cross-reference
for your situation. In our first cross-reference example, shown in Listing 15-3,
we derive the list of all function calls made within a function by iterating
through each instruction in the function to determine if the instruction calls
another function. One method of doing this might be to parse the results of
GetMnem to look for call instructions. This would not be a very portable solu-
tion, because the instruction used to call a function varies among CPU types.
Second, additional parsing would be required to determine exactly which
function was being called. Cross-references avoid each of these difficulties
because they are CPU-independent and directly inform us about the target
of the cross-reference.

#include <idc.idc>

static main() {
auto func, end, target, inst, name, flags, xref;
flags = SEARCH DOWN | SEARCH_NEXT;
func = GetFunctionAttr(ScreenEA(), FUNCATTR_START);

272 Chapter 15

if (func != -1) {
name = Name(func);
end = GetFunctionAttr(func, FUNCATTR_END);
for (inst = func; inst < end; inst = FindCode(inst, flags)) {
for (target = Rfirst(inst); target != BADADDR; target = Rnext(inst, target)) {
xref = XrefType();
if (xref == f1 CN || xref == f1 CF) {
Message("%s calls %s from 0x%x\n", name, Name(target), inst);
}
}
}
}

else {
Warning("No function found at location %x", ScreenEA());

}

Listing 15-3: Enumerating function calls

In this example, we must iterate through each instruction in the func-
tion. For each instruction, we must then iterate through each cross-reference
from the instruction. We are interested only in cross-references that call other
functions, so we must test the return value of xrefType looking for f1_cN or
f1_cF-type cross-references. Here again, this particular solution handles only
functions whose instructions happen to be contiguous. Given that the script
is already iterating over the cross-references from each instruction, it would
not take many changes to produce a flow-driven analysis instead of the
address-driven analysis seen here.

Another use for cross-references is to determine every location that refer-
ences a particular location. For example, if we wanted to create a low-budget
security analyzer, we might be interested in highlighting all calls to functions
such as strcpy and sprintf.

DANGEROUS FUNCTIONS

The C functions strcpy and sprintf are generally acknowledged as dangerous
to use because they allow for unbounded copying into destination buffers. While
each may be safely used by programmers who conduct proper checks on the size
of source and destination buffers, such checks are all too often forgotten by program-
mers unaware of the dangers of these functions. The strcpy function, for example, is
declared as follows:

char *strcpy(char *dest, const char *source);

The strcpy function’s defined behavior is to copy all characters up to and includ-
ing the first null termination character encountered in the source buffer to the given
destination buffer (dest). The fundamental problem is that there is no way to deter-
mine, at runtime, the size of any array. In this instance, strcpy has no means to
determine whether the capacity of the destination buffer is sufficient to hold all of the
data to be copied from source. Such unchecked copy operations are a major cause
of buffer overflow vulnerabilities.

IDA Scripting 273

274

Chapter 15

Q0000

In the example shown in Listing 15-4, we work in reverse to iterate across
all of the cross-references to (as opposed to from in the preceding example) a
particular symbol:

#include <idc.idc>
static list callers(bad func) {
auto func, addr, xref, source;
func = LocByName(bad_func);
if (func == BADADDR) {
Warning("Sorry, %s not found in database", bad_func);

else {
for (addr = RfirstB(func); addr !'= BADADDR; addr = RnextB(func, addr)) {
xref = XrefType();
if (xref == f1 (N || xref == f1 CF) {
source = GetFunctionName(addr);
Message("%s is called from Ox%x in %s\n", bad_func, addr, source);
}
}
}
}

static main() {
list _callers(" strcpy");
list callers(" sprintf");
}

Listing 15-4: Enumerating a function’s callers

In this example, the LocByName @ function is used to find the address of a
given (by name) bad function. If the function’s address is found, a loop ® is
executed in order to process all cross-references to the bad function. For each
cross-reference, if the cross-reference type ® is determined to be a call-type
O cross-reference, the calling function’s name is determined ® and is dis-
played to the user @®.

It is important to note that some modifications may be required to per-
form a proper lookup of the name of an imported function. In ELF executa-
bles in particular, which combine a procedure linkage table (PLT) with a
global offset table (GOT) to handle the details of linking to shared libraries,
the names that IDA assigns to imported functions may be less than clear. For
example, a PLT entry may appear to be named _memcpy, when in fact it is
named .memcpy and IDA has replaced the dot with an underscore because
IDA considers dots invalid characters within names. Further complicating
matters is the fact that IDA may actually create a symbol named memcpy that
resides in a section that IDA names extern. When attempting to enumerate
cross-references to memcpy, we are interested in the PLT version of the symbol
because this is the version that is called from other functions in the program
and thus the version to which all cross-references would refer.

Enumerating Exported Functions

In Chapter 13 we discussed the use of idsutils to generate .ids files that
describe the contents of shared libraries. Recall that the first step in generat-
ing a .ids file involves generating a .idt file, which is a text file containing
descriptions of each exported function contained in the library. IDC con-
tains functions for iterating through the functions that are exported by a
shared library. The script shown in Listing 15-5 can be run to generate an
.idt file after opening a shared library with IDA:

#include <idc.idc>
static main() {
auto entryPoints, i, ord, addr, name, purged, file, fd;
file = AskFile(1, "*.idt", "Select IDT save file");
fd = fopen(file, "w");
entryPoints = GetEntryPointQty();
fprintf(fd, "ALIGNMENT 4\n");
fprintf(fd, "0 Name=%s\n", GetInputFile());
for (i = 0; i < entryPoints; i++) {
ord = GetEntryOrdinal(i);
if (ord == 0) continue;
addr = GetEntryPoint(ord);
if (ord == addr) {
continue; //entry point has no ordinal
}
name = Name(addr);
fprintf(fd, "%d Name=%s", ord, name);
purged = GetFunctionAttr(addr, FUNCATTR_ARGSIZE);
if (purged > 0) {
fprintf(fd, " Pascal=%d", purged);

}
fprintf(fd, "\n");
}
}

Listing 15-5: A script to generate .idt files

The output of the script is saved to a file chosen by the user. New func-
tions introduced in this script include GetEntryPointQty, which returns the
number of symbols exported by the library; GetEntryordinal, which returns
an ordinal number (an index into the library’s export table); GetEntryPoint,
which returns the address associated with an exported function that has been
identified by ordinal number; and GetInputFile, which returns the name of
the file that was loaded into IDA.

Finding and Labeling Function Arguments

Versions of GCC later than 3.4 use mov statements rather than push statements
in x86 binaries to place function arguments into the stack before calling a
function. Occasionally this causes some analysis problems for IDA (newer
versions of IDA handle this situation better), because the analysis engine

IDA Scripting 275

276

Chapter 15

relies on finding push statements to pinpoint locations at which arguments
are pushed for a function call. The following listing shows an IDA disassem-
bly when parameters are pushed onto the stack:

.text:08048894 push 0 ; protocol
.text:08048896 push 1 ; type
.text:08048898 push 2 ; domain
.text:0804889A call _socket

Note the comments that IDA has placed in the right margin. Such com-
menting is possible only when IDA recognizes that parameters are being
pushed and when IDA knows the signature of the function being called.
When mov statements are used to place parameters onto the stack, the
resulting disassembly is somewhat less informative, as shown here:

.text:080487AD mov [esp+8], O
.text:080487B5 mov [esp+4], 1
.text:080487BD mov [esp], 2
.text:080487C4 call _socket

In this case, IDA has failed to recognize that the three mov statements pre-
ceding the call are being used to set up the parameters for the function call.
As a result, we get less assistance from IDA in the form of automatic comments
in the disassembly.

Here we have a situation where a script might be able to restore some of
the information that we are accustomed to seeing in our disassemblies. List-
ing 15-6 is a first effort at automatically recognizing instructions that are set-
ting up parameters for function calls:

#include <idc.idc>
static main() {
auto addr, op, end, idx;
auto func_flags, type, val, search;
search = SEARCH _DOWN | SEARCH_NEXT;
addr = GetFunctionAttr(ScreenEA(), FUNCATTR_START);
func_flags = GetFunctionFlags(addr);
if (func_flags & FUNC_FRAME) { //Is this an ebp-based frame?
end = GetFunctionAttr(addr, FUNCATTR_END);
for (; addr < end &% addr !'= BADADDR; addr = FindCode(addr, search)) {
type = GetOpType(addr, 0);
if (type == 3) { //Is this a register indirect operand?
if (GetOperandValue(addr, 0) == 4) { //Is the register esp?
MakeComm(addr, "arg 0"); //[esp] equates to arg 0
}
}

else if (type == 4) { //Is this a register + displacement operand?
idx = strstr(GetOpnd(addr, 0), "[esp"); //Is the register esp?
if (idx != -1) {
val = GetOperandvalue(addr, 0); //get the displacement
MakeComm(addr, form("arg %d", val)); //add a comment

Listing 15-6: Automating parameter recognition

The script works only on EBP-based frames and relies on the fact that
when parameters are moved into the stack prior to a function call, GCC
generates memory references relative to esp. The script iterates through all
instructions in a function; for each instruction that writes to a memory loca-
tion using esp as a base register, the script determines the depth within the
stack and adds a comment indicating which parameter is being moved. The
GetFunctionFlags function offers access to various flags associated with a func-
tion, such as whether the function uses an EBP-based stack frame. Running
the script in Listing 15-6 yields the annotated disassembly shown here:

.text:080487AD mov [esp+8], 0 ; arg 8
.text:0804878B5 mov [esp+4], 1 ; arg 4
.text:080487BD mov [esp], 2 ; arg.o
.text:080487C4 call _socket

The comments aren’t particularly informative. However, we can now tell
at a glance that the three mov statements are used to place parameters onto
the stack, which is a step in the right direction. By extending the script a bit
further and exploring some more of IDC’s capabilities, we can come up with
a script that provides almost as much information as IDA does when it prop-
erly recognizes parameters. The output of the final product is shown here:

.text:080487AD mov [esp+8], 0 ; int protocol
.text:080487B5 mov [esp+4], 1 ; int type
.text:080487BD mov [esp], 2 ; int domain
.text:080487C4 call _socket

The extended version of the script in Listing 15-6, which is capable of
incorporating data from function signatures into comments, is available on
this book’s website.®

8. See http://www.idabook.com/ch15_examples.

IDA Scripting 277

278

Chapter 15

Emulating Assembly Language Behavior

There are a number of reasons why you might need to write a script that
emulates the behavior of a program you are analyzing. For example, the pro-
gram you are studying may be self-modifying, as many malware programs are,
or the program may contain some encoded data that gets decoded when it
is needed at runtime. Without running the program and pulling the modi-
fied data out of the running process’s memory, how can you understand
the behavior of the program? The answer may lie with an IDC script. If the
decoding process is not terribly complex, you may be able to quickly write
an IDC script that performs the same actions that are performed by the
program when it runs. Using a script to decode data in this way eliminates
the need to run a program when you don’t know what the program does or
you don’t have access to a platform on which you can run the program. An
example of the latter case might occur if you were examining a MIPS binary
with your Windows version of IDA. Without any MIPS hardware, you would not
be able to execute the MIPS binary and observe any data decoding it might
perform. You could, however, write an IDC script to mimic the behavior of
the binary and make the required changes within the IDA database, all with
no need for a MIPS execution environment.

The following x86 code was extracted from a DEFCON?® Capture the
Flag binary.1

.text:08049EDE mov [ebp+var_4], 0
.text:08049EE5
.text:08049EE5 loc_8049EES5:

.text:08049EE5 cmp [ebp+var_4], 3Cih
.text:08049EEC ja short locret_8049F0oD
.text:08049EEE mov edx, [ebp+var 4]
.text:08049EF1 add edx, 804B880h
.text:08049EF7 mov eax, [ebp+var 4]
.text:08049EFA add eax, 804B880h
.text:08049EFF mov al, [eax]
.text:08049F01 Xor eax, 4Bh
.text:08049F04 mov [edx], al
.text:08049F06 lea eax, [ebp+var_4]
.text:08049F09 inc dword ptr [eax]
.text:08049F0B jmp short loc_8049EE5

This code decodes a private key that has been embedded within the pro-
gram binary. Using the IDC script shown in Listing 15-7, we can extract the
private key without running the program:

auto var_4, edx, eax, al;

var_4 = 0;

while (var_4 <= 0x3C1) {
edx = var_4;

9. See http://www.defcon.org/.

10. Courtesy of Kenshoto, the organizers of CTF at DEFCON 15. Capture the Flag is an annual
hacking competition held at DEFCON.

edx = edx + 0x804B880;
eax = var_4;

eax = eax + 0x804B880;
al = Byte(eax);

al = al ~ 0x4B;
PatchByte(edx, al);
Var_4++;

}

Listing 15-7: Emulating assembly language with IDC

Listing 15-7 is a fairly literal translation of the preceding assembly lan-
guage sequence generated according to the following rather mechanical
rules.

1. For each stack variable and register used in the assembly code, declare
an IDC variable.

2. For each assembly language statement, write an IDC statement that mim-
ics its behavior.

3. Reading and writing stack variables is emulated by reading and writing
the corresponding variable declared in your IDC script.

4. Reading from a nonstack location is accomplished using the Byte, Word,
or bword function, depending on the amount of data being read (1, 2, or
4 bytes).

5. Writing to a nonstack location is accomplished using the PatchByte, Patch-
Word, or PatchDword function, depending on the amount of data being
written.

6. Ingeneral, if the code appears to contain a loop for which the termina-
tion condition is not immediately obvious, it is easiest to begin with an
infinite loop such as while (1) {} and then insert a break statement when
you encounter statements that cause the loop to terminate.

7. When the assembly code calls functions, things get complicated. In
order to properly simulate the behavior of the assembly code, you must
find a way to mimic the behavior of the function that has been called,
including providing a return value that makes sense within the context
of the code being simulated. This fact alone may preclude the use of IDC
as a tool for emulating the behavior of an assembly language sequence.

The important thing to understand when developing scripts such as the
previous one is that it is not absolutely necessary to fully understand how
the code you are emulating behaves on a global scale. It is often sufficient
to understand only one or two instructions at a time and generate correct
IDC translations for those instructions. If each instruction has been correctly
translated into IDC, then the script as a whole should properly mimic the
complete functionality of the original assembly code. We can delay further
study of the assembly language algorithm until after the IDC script has
been completed, at which point we can use the IDC script to enhance our

IDA Scripting 279

280

understanding of the underlying assembly. Once we spend some time con-
sidering how our example algorithm works, we might shorten the preceding
IDC script to the following:

auto var_4, addr;

for (var_4 = 0; var_4 <= 0x3C1; var_4++) {
addr = 0x804B880 + var_4;
PatchByte(addr, Byte(addr) ~ 0x4B);

}

As an alternative, if we did not wish to modify the database in any way, we
could replace the patchByte function with a call to Message if we were dealing
with ASCII data, or as an alternative we could write the data to a file if we
were dealing with binary data.

IDAPython

Chapter 15

IDAPython is a plug-in developed by Gergely Erdelyi that integrates a Python
interpreter into IDA. Combined with supplied Python bindings, this plug-in
allows you to write Python scripts with full access to all of the capabilities of
the IDC scripting language. One clear advantage gained with IDAPython is
access to Python’s native data-handling capabilities as well as the full range
of Python modules. In addition, IDAPython exposes a significant portion of
IDA’s SDK functionality, allowing for far more powerful scripting than is pos-
sible using IDC. IDAPython has developed quite a following in the IDA com-
munity. lIfak’s blog'! contains numerous interesting examples of problem
solving with Python scripts, while questions, answers, and many other useful
IDAPython scripts are frequently posted in the forums at OpenRCE.org.*? In
addition, third-party tools such as BinNavi'® from Zynamics rely on IDA and
IDAPython in order to perform various subtasks required by the tools.

Since IDA 5.4, Hex-Rays has been including IDAPython as a standard
plug-in. Source code for the plug-in is available for download on the IDA-
Python project page,'* and APl documentation is available on the Hex-Rays
website.'® IDA enables the plug-in only when Python is found to be installed
on the computer on which you are running IDA. The Windows version of
IDA ships with and installs a compatible version of Python,® while the Linux
and OS X versions of IDA leave proper installation of Python up to you. On
Linux, the current version of IDA (6.1) looks for Python 2.6. IDAPython is
compatible with Python 2.7, and IDA will work just fine if you create symlinks

11. See http://www.hexblog.com.

12. See http://www.openrce.org/articles/.

13. See http://www.zynamics.com/binnavi.html.

14. See http://code.google.com/p/idapython/.

15. See http://www.hex-rays.com/idapro/idapython_docs/index.html.
16. See http://www.python.org/.

from the required Python 2.6 libraries to your existing Python 2.7 libraries. If
you have Python 2.7, a command similar to the following will create the sym-
link that will make IDA happy:

1n -s /usr/lib/libpython2.7.s0.1.0 /usr/lib/libpython2.6.s0.1

OS X users may find that the version of Python that ships with OS X is
older than that required by IDA. If this is the case, a suitable Python installer
should be downloaded from www.python.org.t’

Using IDAPython

IDAPython bridges Python code into IDA by making available three
Python modules, each serving a specific purpose. Access to the core IDA
API (as exposed via the SDK) is made available with the idaapi module. All
of the functions present in IDC are made available in IDAPython’s idc mod-
ule. The third module that ships with IDAPython is idautils, which provides
a number of utility functions, many of which yield Python lists of various
database-related objects such as functions or cross-references. Modules idc
and idautils are automatically imported for all IDAPython scripts. If you
need idaapi, on the other hand, you must import it yourself.

When using IDAPython, keep in mind that the plug-in embeds a single
instance of the Python interpreter into IDA. This interpreter is not destroyed
until you close IDA. As a result, you can view all of your scripts and state-
ments as if they are running within a single Python shell session. For exam-
ple, once you have imported the idaapi module for the first time in your IDA
session, you need never import it again until you restart IDA. Similarly, ini-
tialized variables and function definitions retain their values until they are
redefined or until you quit IDA.

There are a number of strategies for learning IDA’s Python API. If you
already have some experience using IDC or programming with the IDA SDK,
then you should feel right at home with the idaapi and idc modules. A quick
review of the additional features in the idautils module should be all you
really need to start making full use of IDAPython. If you have prior experi-
ence with IDC or the SDK, then you might dive into the Hex-Ray’s docu-
mentation for the Python API to develop a feel for the capabilities it offers.
Remember that the idc module basically mirrors the IDC API and that you
may find the list of IDC functions in IDA’s built-in help to be quite useful.
Similarly, the descriptions of IDC functions presented earlier in this chapter
are equally applicable to the corresponding functions in the idc module.

17. See http://www.python.org/download/mac/.

IDA Scripting 281

282

IDAPython Scripting Examples

Chapter 15

By way of offering a compare and contrast between IDC and IDAPython,
the following sections present the same example cases seen previously in the
discussion of IDC. Wherever possible we endeavor to make maximum use of
Python-specific features to demonstrate some of the efficiencies that can be
gained by scripting in Python.

Enumerating Functions

One of the strengths of IDAPython is the way that it uses Python’s powerful
datatypes to simplify access to collections of database objects. In Listing 15-8,
we reimplement the function enumeration script of Listing 15-1 in Python.
Recall that the purpose of this script is to iterate over every function in a
database and print basic information about each function, including the
start and end addresses of the function, the size of the function’s arguments,
and the size of the function’s local variable space. All output is sent to the
output window.

funcs = Functions()®
for f in funcs:@®
name = Name(f)
end = GetFunctionAttr(f, FUNCATTR_END)
locals = GetFunctionAttr(f, FUNCATTR_FRSIZE)
frame = GetFrame(f) # retrieve a handle to the function’s stack frame
if frame is None: continue
ret = GetMemberOffset(frame, " r") # " r" is the name of the return address
if ret == -1: continue
firstArg = ret + 4
args = GetStrucSize(frame) - firstArg
Message("Function: %s, starts at %x, ends at %x\n" % (name, f, end))
Message(" Local variable area is %d bytes\n" % locals)
Message(" Arguments occupy %d bytes (%d args)\n" % (args, args / 4))

Listing 15-8: Function enumeration using Python

For this particular script, the use of Python gains us little in the way of
efficiency other than the use of the Functions @ list generator, which facili-
tates the for loop at ®.

Enumerating Instructions

Listing 15-9 demonstrates how the instruction-counting script of Listing 15-2
might be written in Python, taking advantage of the list generators available
in the idautils module.

from idaapi import *
func = get func(here())® # here() is synonymous with ScreenEA()
if not func is None:

fname = Name(func.startkA)

count = 0

for i in FuncItems(func.startEA)®: count = count + 1

Warning("%s contains %d instructions\n" % (fname,count))
else:

Warning("No function found at location %x" % here())

Listing 15-9: Instruction enumeration in Python

Differences from the IDC version include the use of an SDK function @
(accessed via idaapi) to retrieve a reference to a function object (specifically
a func_t) and the use of the FuncItems generator @ (from idautils) to provide
easy iteration over all of the instructions within the function. Because we can’t
use Python’s 1len function on a generator, we are still obligated to step through
the generator list in order to count each instruction one at a time.

Enumerating Cross-References

The idautils module contains several generator functions that build cross-
reference lists in a somewhat more intuitive way than we saw in IDC. List-
ing 15-10 rewrites the function call enumeration script that we saw previously
in Listing 15-3.

from idaapi import *
func = get_func(here())
if not func is None:

fname = Name(func.startEA)

items = FuncItems(func.startEA)

for i in items:

for xref in XrefsFrom(i, 0):©®
if xref.type == f1_CN or xref.type == f1_CF:
Message("%s calls %s from ox%x\n" % (fname, Name(xref.to), i))

else:

Warning("No function found at location %x" % here())

Listing 15-10: Enumerating function calls using Python

New in this script is the use of the XrefsFrom generator @ (from idautils)
to step through all cross-references from the current instruction. XrefsFrom
returns a reference to an xrefblk_t object that contains detailed information
about the current cross-reference.

Enumerating Exported Functions
Listing 15-11 is the Python version of the .idt generator script from Listing 15-5.

file = AskFile(1, "*.idt", "Select IDT save file")
with open(file, 'w') as fd:
fd.write("ALIGNMENT 4\n")
fd.write("0 Name=%s\n" % GetInputFile())
for i in range(GetEntryPointQty()):
ord = GetEntryOrdinal(i)
if ord == 0: continue
addr = GetEntryPoint(ord)

IDA Scripting 283

if ord == addr: continue #entry point has no ordinal
fd.write("%d Name=%s" % (ord, Name(addr)))
purged = GetFunctionAttr(addr, FUNCATTR_ARGSIZE)
if purged > o:
fd.write(" Pascal=%d" % purged)
fd.write("\n")

Listing 15-11: A Python script to generate IDT files

The two scripts look remarkably similar because IDAPython has no gen-
erator function for entry-point lists, so we are left to use the same set of func-
tions that were used in Listing 15-5. One difference worth noting is that
IDAPython deprecates IDC’s file-handling functions in favor of Python’s
built-in file-handling functions.

Summary

Scripting provides a powerful means for extending IDA’s capabilities. Through
the years, scripts have been used in a number of innovative ways to fill the
needs of IDA users. Many useful scripts are available for download on the
Hex-Rays website as well as the mirror site of the former IDA Palace.'® IDA
scripts are perfect for small tasks and rapid development, but they are not
ideally suited for all situations.

One of the principal limitations of the IDC language is its lack of support
for complex datatypes and the lack of access to a more fully featured API such
as the C standard library or the Windows API. At the expense of greater com-
plexity, we can lift these limitations by moving away from scripted extensions
and toward compiled extensions. As we will show in the next chapter, com-
piled extensions require the use of the IDA software development kit (SDK),
which has a steeper learning curve than either IDC or IDAPython. However,
the power available when developing extensions with the SDK is usually well
worth the effort spent learning how to use it.

18. See http://old.idapalace.net/.

284 Chapter 15

THE IDA SOFTWARE
DEVELOPMENT KIT

Throughout the course of the book, we
have used phrases like “IDA does this,” and
“IDA does that.” While IDA certainly does an
awful lot for us, the intelligence is more correctly
attributed to the various modules upon which IDA

relies. For example, it is the processor module that

makes all of the decisions during the analysis phase, so one could argue that
IDA is only as smart as the processor modules on which it relies. Of course,
Hex-Rays puts tremendous effort into ensuring that its processor modules are
as capable as possible, and for the casual user, IDA neatly hides its modular
architecture beneath its user interface.

At some point you may find yourself needing more power than the IDC
scripting language has to offer, whether for performance reasons or because
you wish to do things that IDC simply was not designed to do. When that
moment arrives, it is time to advance to using IDA’s software development kit
(SDK) to build your own compiled modules for use with IDA.

286

NOTE

The IDC scripting engine is built on top of IDA's SDK. All IDC functions are ultimately
translated to calls to one or more SDK functions that perform the actual work. While it
is true that if you can do something in IDC, you can do the same thing using the SDK,
the reverse does not hold. The SDK offers far more power than is available using IDC
alone, and many SDK actions have no IDC counterpart.

The SDK exposes IDA’s internal programming interfaces in the form of
C++ libraries and the header files required to interface to those libraries. The
SDK is required in order to create loader modules to handle new file formats,
processor modules to disassemble new CPU instruction sets, and plug-in
modules that might be viewed as more powerful, compiled alternatives to
scripts.

BELLS, WHISTLES, AND BULLETS TO THE FOOT

While working with C++, you will of course have access to a wide variety of C++
libraries, including your operating system’s native APIs. By utilizing such libraries,
you may be tempted to incorporate a wide variety of sophisticated features into
any modules that you build. However, you should be very careful what functionality
you choose to incorporate in this way, as it may lead to instability in IDA. The most
concrete example of this is the fact that IDA is a single-threaded application. No
effort whatsoever is made to synchronize access to low-level database structures,
nor does the SDK provide facilities for doing so. For IDA versions earlier than 5.5,
you should never create additional threads that may simultaneously access the
database. For versions 5.5 and later, you may create additional threads, but any
calls to SDK functions should be queued using the exec_request_t and execute_sync
function described in kernwin.hpp. Also, you should understand that any blocking™
operations you perform will render IDA unresponsive until the operation completes.

A blocking operation is an action that causes a program to come to a halt while it awaits
completion of the action.

In this chapter we introduce some of the core capabilities of the SDK.
You will find these capabilities useful whether you are creating plug-ins,
loader modules, or processor modules. As each of these types of modules is
covered individually in the following three chapters, the examples in this
chapter are offered without attempting to supply a specific context in which
they might be used.

SDK Introduction

Chapter 16

IDA’s SDK is distributed in much the same manner as the other IDA extras
that we have discussed so far. The Zip file containing the SDK can be found
on your original IDA CD, or authorized users can download the SDK from
the Hex-Rays website. Each version of the SDK is named for the version of
IDA with which it is compatible (for example, idasdk61.zip goes with IDA
version 6.1). The SDK features the same minimalist documentation typically
found in other IDA-related tools, which in the case of the SDK means a

top-level readme.txt file and additional README files for plug-ins, processor
modules, and loaders.

The SDK defines the published programming interface that modules
may use to interact with IDA. Prior to SDK version 4.9, it was not uncommon
for these interfaces to change enough that a module that successfully com-
piled under SDK 4.8 might no longer compile under a newer SDK, such as
version 4.9, without the need for changes. With the introduction of version 4.9
of the SDK, Hex-Rays chose to standardize the existing API, which means
that not only would modules require no changes to compile successfully with
newer versions of the SDK, but modules would also be binary compatible
with newer versions of IDA. This means that module users need no longer
wait for module authors to update their source code or make available
updated binary versions of their modules each time a new version of IDA is
released. It does not mean that existing API interfaces are completely frozen;
Hex-Rays continues to introduce new features with each new version of the
SDK (that is, each new SDK is a superset of its predecessor). Modules that
make use of these newer features are typically not compatible with older
versions of IDA or the SDK. That said, there have been occasions where, for
various reasons, functions have been renamed or marked as obsolete. The
SDK offers macros to allow or disallow the use of deprecated functions,
making it easy to note when a function has been deprecated.

SDK Installation

Prior to version 5.4, the Zip file containing the SDK does not contain a top-
level directory. Because the SDK shares several subdirectory names with IDA,
it is highly recommended that you create a dedicated SDK directory, such as
idasdk53, and extract the SDK contents into that directory. This will make it
much easier to distinguish SDK components from IDA components. Begin-
ning with version 5.4, the IDA SDK is packaged within a top-level SDK
directory, such as idasdk61, so this step is no longer needed. There is no
requirement to install the SDK in a specific location relative to <IDADIR>.
Regardless of where you choose to install your SDK, we will refer to the SDK
directory generically as <SDKDIR> for the remainder of the book.

SDK Layout

A basic understanding of the directory structure used within the SDK will be
helpful, both in knowing where you might find documentation and in know-
ing where you can expect to find the modules that you build. A quick rundown
of what you can expect to find in the SDK follows.

bin directory
This directory is where the example build scripts save their compiled
modules following a successful build. Installing a module involves copying
the module from the appropriate subdirectory within bin to the appro-
priate subdirectory in <IDADIR>. Module installation will be covered in
more detail in Chapters 17, 18, and 19. This directory also contains a
postprocessing tool required for the creation of processor modules.

The IDA Software Development Kit 287

288

Chapter 16

etc directory
This directory contains source code for two utilities that are required to
build some SDK modules. Compiled versions of these utilities are also
included with the SDK.

include directory
This directory contains the header files that define the interface to the
IDA API. In short, every API data structure that you are allowed to use
and every API function that you are allowed to call are declared in one
of the header files in this directory. The SDK’s top-level readme.txt file
contains an overview of some of the more commonly used header files
in this directory. The files in this directory constitute the bulk of the
documentation (as in “read the source”) for the SDK.

Idr directory
This directory contains the source code and build scripts for several
example loader modules. The README file for loaders is nothing more
than a rundown of the contents of this directory.

lib directory
This directory contains a number of subdirectories, which in turn con-
tain the link libraries required to build various IDA modules. The subdi-
rectories are named after the compiler with which they should be used.
For example, x86_win_vc_32 (6.1 and later) or vc.w32 (6.0 and earlier) con-
tains the library to use with Visual Studio and 32-bit IDA on Windows,
while x64 _mac_gcc_64 (6.1 and later) or gcc64.mac64 (6.0 and earlier) con-
tains the library for use with 64-bit IDA on OSX platforms.

module directory
This directory contains the source code and build scripts for several
example processor modules. The README file for processor modules
is nothing more than a rundown of the contents of this directory.

plug-ins directory
This directory contains the source code and build scripts for several
example plug-in modules. The README file for plug-ins provides a
high-level overview of the plug-in architecture.

top-level directory
The top level of the SDK contains several make files used for building
modules as well as the main readme.txt file for the SDK. Several additional
install_xxx.txt files contain information regarding installation and con-
figuration for various compilers (for example, install_visual.txt discusses
Visual Studio configuration).

Keep in mind that documentation on using the SDK is sparse. For most
developers, knowledge of the SDK has been derived through trial and error
and extensive exploration of the contents of the SDK. You may have some
luck posting questions to the Research & Resources forum on the Hex-Rays
support forums, where other IDA users familiar with the SDK may answer

them. An excellent third-party resource providing an introduction to the SDK
and plug-in writing is Steve Micallef’s guide titled IDA Plug-in Writing in C/C++.}

Configuring a Build Environment

One of the more frustrating aspects of using the SDK is not related to pro-
gramming at all. Instead, you may find that it is relatively easy to code up a
solution to a problem only to find that it is virtually impossible to successfully
build your module. This is true because it can be difficult to support a wide
variety of compilers with a single code base, and coding a solution is com-
plicated by the fact that library file formats recognized by Windows compilers
are often incompatible with one another.

All of the examples included with the SDK were created to be built using
Borland tools. From install_make.txt we have the following quote from lifak:

WIN32 versions can be created only by Borland C++ CBuilder v4.0.
Probably the old BCC v5.2 will work too, but | haven’t checked it.

That being said, other install_xxx files offer pointers on how to success-
fully build modules with other compilers. A few of the example modules
contain files for building with Visual Studio (<SDKDIR>/plugins/vcsample,
for example), while install_visual.txt offers a series of steps for properly
configuring SDK projects using Visual C++ Express 2005.

In order to build modules using Unix-style tools, either on a Unix-style
system such as Linux or using an environment such as MinGW, the SDK
provides a script named idamake.pl that converts the Borland-style make files
into Unix-style make files prior to initiating the build process. This process is
discussed in install_linux.txt.

NOTE The command-line build scripts provided with the SDK expect an environment variable
named IDA to point to <SDKDIR>. You can set this globally for all scripts by editing
<SDKDIR>/allmake.mak and <SDKDIR>/allmake.unx to set this variable or
by adding an IDA environment variable to your global environment.

Steve Micallef’s guide also provides excellent instructions for configuring
build environments for building plug-ins with various compilers. Our personal
preference when building SDK modules for Windows versions of IDA is to
use the MinGW tools gcc and make. The examples presented in Chapters 17,
18, and 19 include makefiles and Visual Studio project files that do not rely
on any of the build scripts included with the SDK and that are easy to modify
to suit the needs of your projects. Module-specific build configuration will
also be discussed in each of these chapters.

The IDA Application Programming Interface

IDA’s API is defined by the contents of the header files in <SDKDIR>/
include. There is no single-source index of available functions (though
Steve Micallef has collected a rather nice subset in his plug-in writing

1. See http://www.binarypool.com/idapluginwriting/.

The IDA Software Development Kit 289

290

Chapter 16

guide). Many prospective SDK programmers find this fact initially difficult to
come to terms with. The reality is that there is never an easy-to-find answer to
the question, “How do | do x using the SDK?” The two principal options for
answering such questions are to post the questions to an IDA user’s forum or
attempt to answer them yourself by searching through the APl documenta-
tion. What documentation, you say? Why, the header files, of course. Granted,
these are not the most searchable of documents, but they do contain the
complete set of API features. In this case, grep (or a suitable replacement,
preferably built into your programming editor) is your friend. The catch is
knowing what to search for, which is not always obvious.

There are a few ways to try to narrow your searches through the API.
The first way is to leverage your knowledge of the IDC scripting language
and attempt to locate similar functionality within the SDK using keywords
and possibly function names derived from IDC. However—and this is an
extremely frustrating point—while the SDK may contain functions that
perform tasks identical to those of IDC functions, the names of those func-
tions are seldom identical. This results in programmers learning two sets of
API calls, one for use with IDC and one for use with the SDK. In order to
address this situation, Appendix B presents a complete list of IDC functions
and the corresponding SDK 6.1 actions that are carried out to execute those
functions.

The second technique for narrowing down SDK-related searches is to
become familiar with the content and, more important, the purpose of the
various SDK header files. In general, related functions and associated data
structures are grouped into headers files based on functional groups. For
example, SDK functions that allow interaction with a user are grouped into
kernwin.hpp. When a grep-style search fails to locate a capability that you
require, some knowledge of which header file relates to that capability will
narrow your search and hopefully limit the number of files that you need to
dig deeper into.

Header Files Overview

While the SDK’s readme.txt files provide a high-level overview of the most
commonly used header files, this section highlights some other useful infor-
mation for working with these files. First, the majority of the header files use
the .hpp suffix, while a few use the .h suffix. This can easily lead to trivial
errors when naming header files to be included in your files. Second, ida.hpp
is the main header file for the SDK and should be included in all SDK-related
projects. Third, the SDK utilizes preprocessor directives designed to preclude
access to functions that Hex-Rays considers dangerous (such as strcpy and
sprintf). For a complete list of these functions refer to the pro.h header file. To
restore access to these functions, you must define the USE_DANGEROUS_FUNCTIONS
macro prior to including ida.hpp in your own files. An example is shown here:

#define USE_DANGEROUS_FUNCTIONS
#include <ida.hpp>

Failure to define USE_DANGEROUS_FUNCTIONS will result in a build error to
the effect that dont_use_snprintf is an undefined symbol (in the case of an
attempt to use the snprintf function). In order to compensate for restricting
access to these so-called dangerous functions, the SDK defines safer equiv-
alents for each, generally in the form of a gstrxxxx function such as gstrncpy
and gsnprintf. These safer versions are also declared in pro.h.

Along similar lines, the SDK restricts access to many standard file
input/output variables and functions such as stdin, stdout, fopen, furite,
and fprintf. This restriction is due in part to limitations of the Borland
compiler. Here again the SDK defines replacement functions in the form
of gxxx counterparts such as qfopen and gfprintf. If you require access to the
standard file functions, then you must define the USE_STANDARD _FILE_FUNCTIONS
macro prior to including fpro.h (which is included from kernwin.hpp, which is,
in turn, included from several other files).

In most cases, each SDK header file contains a brief description of the
file’s purpose and fairly extensive comments describing the data structures
and functions that are declared in the file. Together these comments consti-
tute IDA’s APl documentation. Brief descriptions of some of the more
commonly used SDK header files follow.

area.hpp
This file defines the area_t struct, which represents a contiguous block of
addresses within a database. This struct serves as the base class for several
other classes that build on the concept of an address range. It is seldom
necessary to include this file directly, as it is typically included in files
defining subclasses of area_t.

auto.hpp
This file declares functions used to work with IDA’s autoanalyzer. The
autoanalyzer performs queued analysis tasks when IDA is not busy
processing user-input events.

bytes.hpp
This file declares functions for working with individual database bytes.
Functions declared in this file are used to read and write individual
database bytes as well as manipulate the characteristics of those bytes.
Miscellaneous functions also provide access to flags associated with
instruction operands, while other functions allow manipulation of
regular and repeatable comments.

dbg.hpp
This file declares functions offering programmatic control of IDA’s
debugger.

entry.hpp
This header declares functions for working with a file’s entry points. For
shared libraries, each exported function or data value is considered an
entry point.

The IDA Software Development Kit 291

292

Chapter 16

expr.hpp
This file declares functions and data structures for working with IDC

constructs. It is possible to modify existing IDC functions, add new IDC
functions, or execute IDC statements from within modules.

fpro.h
This file contains the alternative file 1/0 functions, such as qfopen,
discussed previously.

frame.hpp
This header contains functions used to manipulate stack frames.

funcs.hpp
This header contains functions and data structures for working with
disassembled functions as well as functions for working with FLIRT
signatures.

gdl.hpp
This file declares support routines for generating graphs using either

DOT or GDL.

ida.hpp
This is the main header file required for working with the SDK. This file
contains the definition of the idainfo structure as well as the declaration
of the global variable inf, which contains a number of fields containing
information about the current database as well as fields initialized from
configuration file settings.

idp.hpp
This file contains declarations of structures that form the foundation
of processor modules. The global variable ph, which describes the current
processor module, and the global variable ash, which describes the current
assembler, are defined in this file.

kernwin.hpp
This file declares functions for interacting with the user and the user
interface. The SDK equivalents of IDC’s Askxxx functions are declared
here, as are functions used to set the display position and configure
hotkey associations.

lines.hpp
This file declares functions for generating formatted, colorized
disassembly lines.

loader.hpp
This file contains the declarations for the loader t and plugin_t structures
required for the creation of loader modules and plug-in modules, respec-
tively, as well as functions useful during the file-loading phase and
functions for activating plug-ins.

name.hpp
This file declares functions for manipulating named locations (as opposed
to names within structures or stack frames, which are covered in stuct.hpp
and funcs.hpp, respectively).

netnode.hpp
Netnodes are the lowest-level storage structure accessible via the API.
The details of netnodes are typically hidden by the IDA user interface.
This file contains the definition of the netnode class and functions for
low-level manipulation of netnodes.

pro.h
This file includes the top-level typedefs and macros required in any SDK
module. You do not need to explicitly include this file in your projects,
as it is included from ida.hpp. Among other things, the IDA_SDK_VERSION
macro is defined in this file. IDA_SDK_VERSION provides a means to deter-
mine with which version of the SDK a module is being built, and it can
be tested to provide conditional compilation when using different ver-
sions of the SDK. Note that IDA_SDK_VERSION was introduced with SDK
version 5.2. Prior to SDK 5.2, there is no official way to determine which
SDK is being used. An unofficial header file that defines IDA_SDK_VERSION
for older versions of the SDK (sdk_versions.h) is available on this book’s
website.

search.hpp
This file declares functions for performing different types of searches on
a database.

segment.hpp
This file contains the declaration of the segment_t class, a subclass of area_t,
which is used to describe individual sections (.text, .data, etc.) within a
binary. Functions for working with segments are also declared here.

struct.hpp
This file contains the declaration of the struc_t class and functions for
manipulating structures within a database.

typeinf.hpp
This file declares functions for working with IDA type libraries. Among

other things, functions declared here offer access to function signatures,
including function return types and parameter sequences.

ua.hpp
This file declares the op_t and insn_t classes used extensively in processor
modules. Also declared here are functions used for disassembling individ-
ual instructions and for generating the text for various portions of each
disassembled line.

xref.hpp
This file declares the datatypes and functions required for adding,
deleting, and iterating code and data cross-references.

The IDA Software Development Kit 293

294

Chapter 16

The preceding list describes approximately half of the header files that
ship with the SDK. You are encouraged to familiarize yourself not only with
the files in this list but also with all of the other header files as well, as you dig
deeper into the SDK. Functions that make up the published API are marked
as ida_export. Only functions designated as ida_export are exported in the
link libraries that ship with the SDK. Don’t be misled by the use of idaapi,
as it merely signifies that a function is to use the stdcall calling convention
on Windows platforms only. You may occasionally run across interesting-
looking functions that are not designated as ida_export; you cannot use
these functions in your modules.

Netnodes

Much of IDA’s APl is built around C++ classes that model various aspects of a
disassembled binary. The netnode class, on the other hand, seems wrapped in
mystery because it appears to have no direct relationship to constructs within
binary files (sections, functions, instruction